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 A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical 
emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of 
emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination of 137Ba 
abundances. After recording the emission spectra in the range of 493.362-493.467 nm, quantification of 137Ba abundances was performed 
with the aid of LS-SVM algorithm. The obtained results revealed that using LS-SVM as a nonlinear modeling approach improves the 
predictive quality of the developed models compared with partial least squares (PLS) method. The calculated results proved that the 
combination of ICP-OES and LS-SVM is a suitable and low cost technique for the determination of 137Ba abundances. Performance of the 
proposed method was examined through measuring 137Ba abundances in synthetic mixtures and water samples. 
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INTRODUCTION 
 
 Barium is a silvery-white metal which exists in nature 
only in ores containing mixtures of elements. It combines 
with other chemicals such as sulfur or carbon and oxygen to 
form barium compounds. Barium compounds are used by 
the oil and gas industries to make drilling muds. They are 
also used to make paint, bricks, ceramics, glass, and rubber 
[1]. Naturally occurring barium consists of six stable 
isotopes, 138Ba (71.7%), 137Ba (11.2%), 136Ba (7.9%), 135Ba 
(6.6%), 1 34Ba (2.4%) and 132Ba (0.1%). The determination 
of the isotopic composition of a particular element is a very 
useful technique to provide information about the 
geographic, chemical, and biological origins of substances 
[2,3]. Since the isotopes of a particular element have 
identical chemical properties despite slightly different 
masses, they may enter into chemical reactions at different 
rates   which    can   induce   local   variations    in    isotopic 
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composition. The measurement of these variations can 
reveal information about the origin and/or the processes that 
have affected the material analyzed. Stable isotope data can 
be relevant to a range of research areas in geology, 
hydrology, food authentication, forensics, medicine and 
environmental sciences [4,5]. 
 The conventional methods for determination of isotopic 
composition of elements are thermal ionization mass 
spectrometry (TIMS) and inductively coupled plasma mass 
spectrometry (ICP-MS). TIMS is a magnetic sector mass 
spectrometry technique that is capable of making very 
precise measurements of isotope ratios of elements that can 
be ionized thermally, usually by passing a current through a 
thin metal ribbon under vacuum. However, time-consuming 
sample preparation, analyte purification, and sample 
determination processes may limit the routine application of 
TIMS for isotope ratio measurements [6]. ICP-MS is 
another method for the determination of isotopic 
composition of elements that uses anargon inductively 
coupled plasma (ICP) as an ionization device interfaced to a  
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low-resolution quadrupole mass analyzer [7-9]. Although 
ICP-MS is an attractive technique for determination of 
isotope ratios, due to its rapidity and selectivity, high 
instrumental and operational costs make it difficult to 
facilitate this method in routine analysis.  
 The isotopic composition of some elements can be 
determined by spectroscopic techniques, such as atomic 
emission or atomic absorption [10,11]. These 
determinations are based on the isotopic shifts of different 
isotopes of a given element in the emission or absorption 
lines. The determination of isotope ratios by atomic 
absorption or atomic emission measurements have been 
reported for Li [12], Pb [13], U [14,15], B [16,17] and Hg 
[18]. 
 Inductively coupled plasma-optical emission 
spectrometry (ICP-OES) is one of the most powerful and 
popular analytical tools for the determination of trace 
elements in a variety of different sample matrices. 
Compared with the mass spectrometric methods, ICP-OES 
is a simple, fast and less expensive method. However, due 
to the small isotopic shifts, the emission spectra of isotopes 
cannot be resolved by conventional ICP-OES spectrometers. 
This prevents the quantitative determination of the isotopes 
by direct emission measurements [16]. 
 Under computer-controlled instrumentation, multivariate 
chemometrics methods play a very important role in the 
multicomponent analysis of the mixtures by spectroscopic 
techniques [19-21]. The application of quantitative 
chemometrics to multivariate chemical data is becoming 
more widespread owing to the availability of digitized 
spectroscopic data and commercial software for laboratory 
computers.  
 Recently, multivariate calibration methods have been 
employed to determine the isotopic composition of elements 
by various atomic spectrometry techniques such as laser-
induced breakdown spectroscopy and inductively coupled 
plasma-optical emission spectrometry. Zolfonoun et al. 
proposed the application of ICP-OES for the determination 
of boron isotopic ratio using multivariate curve resolution 
with alternating least squares (MCR-ALS) algorithm [16]. 
Chan et al. used PLS calibration for the determination of 
235U and 238U using laser induced breakdown spectroscopy 
(LIBS) [22]. Zolfonoun utilized ICP-OES combined with 
derivative  spectroscopy,  MCR-ALS  and PLS methods, for  

 
 
the determination of 6Li and 7Li abundances [23]. Also, 
Khayatzadeh Mahani et al. applied PLS calibration for the 
quantification of 235U abundance by using ICP-OES 
technique [10]. 
 Support vector machine (SVM), introduced by Vapnik 
[24], is a valuable tool for solving pattern recognition and 
classification problems. The SVM algorithm can be applied 
to regression problems by the introduction of an alternative 
loss function. Due to its advantages and remarkable 
generalization performance over other methods, SVM has 
attracted attention and gained extensive application (Vapnik 
1998) [25]. Least-square-support vector machine (LS-SVM) 
is an alternate formulation of SVM described by Suykens 
and Vandewalle [26]. The LS-SVM can resolve linear and 
non-linear multivariate calibration problems in a relatively 
fast manner [27]. Recently, multicomponent determinations 
based on the LS-SVM application in spectrophotometric 
and voltammetric data have been published [28-30].  
 The aim of this work is to develop a rapid and 
inexpensive method for the quantitative determination of 
137Ba abundances by ICP-OES. Since conventional ICP-
OES spectrometers are not able to directly determine the 
isotopic composition of elements due to the limitation in 
spectral resolution, LS-SVM algorithm as an efficient 
multivariate calibration method was employed for the 
quantification of 137Ba abundances. 
 
THEORY 
 
Theory of Least-square Support Vector Regression 
 In principle, LS-SVM always fits a linear relation (y = 
wx + b) between the independent variable or regressor (x) 
and the dependent variable (y). The best relation is the one 
that minimizes the cost function (Q) containing a penalized 
regression (ei) error term: 
 

 




n

i
i

T eWWQ
1

2

2
1

2
1 

 
 
subject to: 
 

 niebxWy ii
T

i ,...,1   
 
where φ denotes the  feature  mapping  parameter.  The  first  
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part of this cost function is a weight decay which is used to 
regularize weight sizes and penalize large weights. Due to 
this regularization, the weights converge towards similar 
values. Large weights deteriorate the generalization ability 
of the LS-SVM method because they can cause excessive 
variance. The second part of cost function is the regression 
error for all training data. The relative weight of this part as 
compared to the first part indicated by the parameter γ, 
which has to be optimized by the user. Similar to other 
multivariate statistical models, performance of the LS-
SVMs for quantitative studies depends on the combination 
of several parameters. The attainment of the kernel function 
is cumbersome and depends on each case. The radial basis 
function (RBF), exp(-(||xi - xj||2)/2σ2), is by far the most 
popular choice of the kernel types because of its localized 
and finite responses across the entire range of the real x-
axis. In this kernel function, σ2 is the width of the Gaussian 
function which should be optimized by the user, to obtain 
the support vectors. For σ of the RBF kernel it should be 
stressed that it is very important to perform a careful model 
selection of the tuning parameters, in combination with the 
regularization constant γ, in order to achieve a good 
generalization model. 
 
Partial Least Squares  
 Partial least squares regression (PLSR) has become the 
most frequently used method for the multivariate calibration 
because high-performance calibration models are obtained, 
while the software is not only available but also easily 
implemented. PLS is a linear modeling technique where 
information in the matrix of predictors D is projected onto a 
small number of underlying (“latent”) variables called PLS 
components, referred to as latent variables. The matrix of 
responses Y is simultaneously used in estimating the 
“latent” variables in D that will be the most relevant for 
predicting the Y variables. The number of significant factors 
for the PLS algorithm was determined using the cross-
validation method. With cross-validation, one sample was 
kept out (leave one out) of the calibration and used for 
prediction. The process was repeated so that each of the 
samples was kept out once.     
 
Statistical Parameters 
 The quality of each model was assessed  by applying the 

 
 
k-fold cross-validation procedure. In k-fold cross-validation, 
the data is first partitioned into k equally (or nearly equally) 
sized segments or folds. The regression model will then be 
trained and tested k times. Each time the model is built 
using (k-1) folds as the training sample and the remaining 
single fold is retained for testing. 
 For the evaluation of the performance of multivariate 
calibration models, the root mean square error (RMSE) can 
be used: 
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The square of the correlation coefficient (R2), indicating the 
fitting quality of all the data to a straight line, is calculated 
for the checking of each calibration, and is calculated as: 
 

 

 

2

1

1

2

2

)(

ˆ
1

yy

yy
R n

i
i

n

i
ii














                                    
 
where ŷi is the estimated value of the ith object and yi is the 
corresponding reference value of this object, y  is the mean 

of reference values and n is the total number of objects in 
the corresponding set.   
 
EXPERIMENTAL 
 
Reagents 
 All reagents used were of analytical grade and were used 
as supplied. 137Ba and naturally abundant barium standard 
solutions (100 μg ml-1 as Ba) were prepared by dissolving 
appropriate amounts of barium-137Ba carbonate (91.7% 
137Ba) (ISOFLEX) and barium carbonate (Sigma-Aldrich) in 
1 M hydrochloric acid, respectively. Working solutions 
were prepared by adequate dilution with ultrapure water. 

 
Instrumentation and Software 
 All the measurements were carried out using a Perkin 
Elmer (Optima 7300 DV) simultaneous inductively coupled 
plasma-optical emission spectrometer coupled to a 
concentric nebulizer and equipped with a charge coupled 
device    (CCD)    detector.    Operational   conditions   were  
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Table 1. Operating Parameters for the ICP-OES 
 

Plasma gas Argon 

Plasma gas flow rate 15 l min-1 

Auxiliary gas flow rate 0.5 l min-1 

Frequency of RF generator 40 MHz 

RF generator power 1.2 kW 

Nebulizer gas flow rate 0.8 l min-1 

Sample flow rate  0.8 ml min-1 

Integration time  3 s 

Viewing mode Radial 

Viewing height 15 mm 

Spectral resolution  15 pm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
optimized and summarized in Table 1. The data were 
processed using MATLAB software version 7.7. The LS-
SVM optimization and model results were obtained using 
the LS-SVM lab toolbox version 1.5 (Matlab toolbox for 
least squares support vector machines) [25]. 
 
RESULTS AND DISCUSSION 
 
 Barium has a number of emission lines for 
determination by ICP-OES method. However some of these 
emission lines have very low sensitivity for determination 
of barium. Therefore, in this study five emission lines 
(493.408, 455.403, 413.243, 233.527 and 230.425 nm) were 
selected to evaluate the ability of ICP-OES method to 
determine 137Ba abundance.   
 
LS-SVM Determination of 137Ba Abundances 
 Determination of 137Ba abundance by ICP-OES  coupled  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Optimization of the LS-SVM algorithm for 137Ba abundance analysis, based on the emission line at  
               493.408 nm. 
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with LS-SVM method involves constructing calibration and 
validation sets. A training set of 11 samples was taken 
(X(11×10)). The 137Ba abundances in the calibration set were 
in the range of 11.23-91.7% (y(11×1)). For constructing 
calibration samples, the concentration of barium was kept 
constant at 5 μg ml-1. For the validation set, 6 samples were 
prepared. The LS-SVM was applied first to calibration 
samples for the analysis of 137Ba abundances. In this study, 
LS-SVM was performed with radial basis function (RBF) as 
a kernel function because of its good general performance 
and limited parameters. Thus γ (the relative weight of the 
regression error) and σ2 (the kernel parameter of the RBF 
kernel) need to be optimized. To determine the optimal 
parameters, a grid search was performed based on leave- 
one-out cross-validation on the original training set for all 
parameter combinations of γ and σ2. Since because the grid 
search has been performed over just two parameters, a 
contour plot of the optimization error can be visualized 
easily (Fig. 1). From Fig. 1, the optimal parameter settings 
can now be selected from a smooth subarea with a low 
cross-validation RMSE. 
 The quality of each model was assessed by applying the 
5-fold cross-validation procedure. The statistical parameters 
for determination of 137Ba abundances are presented in 
Table 2. 
 As seen in this table, the statistical parameters of LS-
SVM model for the emission line at 493.408 nm are 
superior to those of the other emission lines. The best model 
corresponds to the emission line at 493.408 nm with the 
highest R2 value of 0.994 for the test set and the lowest 
RMSEP value (3.360). The value of the determination 
coefficient of the 5-fold cross-validation for the model 
obtained with the emission line at 493.408 nm (R2

CV = 
0.968) is slightly higher than that concerning the emission 
line at 455.403 nm (R2

CV = 0.950). Therefore, the emission 
line at 493.408 nm was selected for determination of 137Ba 
abundance. In Fig. 2, the plot of the predicted 137Ba 
abundances by LS-SVM model versus actual values is  
represented. The agreement between observed and predicted 
values and high correlation coefficient, confirms the high 
prediction ability of LS-SVM modeling.  
 
Comparison with PLS Method 
 In  order  to determine the  optimum  number  of  factors 

 
 

 
Fig. 2. Plot of the estimated 137Ba abundances by the LS- 

              SVM method vs. the actual values. 
 
 

 
Fig. 3. Optimization of the number of principal components  
            for the PLS model. 

 
 
 

 
Fig. 4. Plot of the estimated 137Ba abundances by the PLS  

              method vs. the actual values. 
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(latent variables) for the partial least squares calibration 
model, the leave-one-out cross-validation procedure was 
applied. The most convenient PLS model that resulted in the 
best fitness contained three latent variables (Fig. 3). In Fig. 
4, the plot of the estimated 137Ba abundances versus actual 
values are represented. The statistical parameters calculated 
for the PLS model are presented in Table 3. As seen, the 
statistical parameters of LS-SVM models are superior to 
that of PLS. 
 Although PLS method assumes a linear relationship 
between the independent and dependent variables, small 
deviation from linearity is acceptable and can be readily 
suppressed by including additional modelling factors. 
 However, in the presence of substantial nonlinearity, 
PLS tends to give large prediction errors and calls for more 
suitable models. Intrinsically non-linear calibration methods  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
are applicable in the later cases [28]. LS-SVM is a 
nonparametric and flexible modelling method which is 
capable of fitting complex and nonlinear relationships 
between species and predictors and therefore produces 
superior model compared to the model developed by PLS 
approach. 
 
Determination of 137Ba Abundances in Synthetic 
Samples 
 The predictive ability of the calibration model was 
assessed using six synthetic samples with various 137Ba 
abundances. The results obtained by applying LS-SVM 
based calibration model to synthetic samples are listed in 
Table 4. Table 2 shows R2 and RMSEP for the test set. The 
results demonstrated that the LS-SVM method serves as a 
good model for the quantification of 137Ba abundances.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            Table 2. Statistical Parameters for the LS-SVM Model 
 

Wavelength Spectral range R2 RMSEC R2
CV RMSECV R2

Test set RMSEP 

493.408 493.362-493.467 0.994 2.332 0.968 5.502 0.977 3.360 

455.403 455.357-455.470 0.988 3.227 0.950 6.686 0.932 5.650 

413.243 413.021-413.121 0.850 11.531 0.472 20.860 0.723 9.697 

233.527 233.507-233.539 0.782 13.781 0.578 16.978 0.782 13.781 

230.425 230.409-230.441 0.764 14.426 0.235 24.368 0.784 13.301 

 
 
            Table 3. Statistical Parameters for the PLS Model 
 

Wavelength Spectral range R2 RMSEC R2
CV RMSECV R2

Test set RMSEP 

493.408 493.362-493.467 0.982 3.736 0.948 6.487 0.952 4.411 

455.403 455.357-455.470 0.974 4.411 0.917 8.201 0.924 8.058 

413.243 413.021-413.121 0.792 12.667 0.550 20.404 0.749 12.486 

233.527 233.507-233.539 0.841 11.083 0.664 16.583 0.787 11.477 

230.425 230.409-230.441 0.753 13.831 0.444 20.879 0.714 13.919 
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Accuracy and Capability of the Method 
 In order to evaluate the applicability of the proposed 
method, spiked water samples with 137Ba (well water, river 
water and sea water) were analyzed for the quantification 
137Ba abundances. In addition, the predicted results using 
ICP-OES combined with the LS-SVM method were 
compared with the ICP-MS method. Comparisons of the 
prediction capability of the proposed method and the ICP-
MS method for determination of 137Ba abundances are 
presented in Table 5. The results demonstrated that the 
proposed method is suitable for determination of 137Ba 
abundances in real water samples.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
CONCLUSIONS 
 
 In the present study, the application of ICP-OES coupled 
with computational methods for determination of 137Ba 
abundances is proposed. The LS-SVM and PLS methods 
were employed for the quantification of 137Ba abundances. 
The results obtained for determination of 137Ba abundances 
demonstrated that the LS-SVM method performs somewhat 
better than the PLS method. The proposed method offers a 
simple and a reasonable substitute for expensive mass 
spectrometric methods for the quantification of barium 
isotopes. This study shows that complex problems that  may 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Table 4. Results of the Measuring 137Ba Abundances in Validation set 
 

Sample number 
137Ba abundance% 

 (Actual) 

137Ba abundance% 

 (LS-SVM) 

Relative error 

(%) 

1 25.71 21.69 (1.12)a -15.66 

2 35.37 33.90 (0.69) -4.16 

3 45.03 49.66 (0.78) 10.28 

4 55.49 58.60 (1.02) 5.60 

5 65.14 69.41 (0.73) 6.55 

6 75.61 75.22 (0.83) -0.51 
                              aValues in parentheses are R.S.D.s based on the three replicate analyses. 
 
 
      Table 5. Determination of 137Ba Abundance% in Spiked Water Samples (n = 3) 
 

137Ba abundance% 

Sample 

Total barium 

concentration 

(mg l-1) 
Proposed method ICP-MS 

Significant error 

(t-test, 95% confidence 

level) 

Well water 0.008 40.04 ± 1.02a 42.06 ± 0.75 No 

River water 0.030 55.36 ± 0.77 53.35 ± 1.05 No 

Caspian seawater 0.070 61.96 ± 1.32 62.34 ± 0.55 No 
         aStandard deviation. 
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arise when quantifying one or several analytes can be 
addressed using suitable chemometric techniques. 
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