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      Three-dimensional (3D) and two-dimensional (2D) quantitative  structure-property relationship (QSPR) models were established for the 

computer-aided design of new phosphorus-containing podands extractants of the uranyl cation. GRIND methodology, where descriptors are 

derived from GRID molecular interaction fields (MIF), and Dragon-generated descriptors were used to perform QSPR modeling of the 

distribution coefficient (logD).  The best model for 3D-QSPR has been obtained with R2 = 0.93 and Q2 = 0.79. Some simple 2D-QSPR 

models, able to correlate and predict the logD, are developed. The final models satisfied a set of rigorous validation criteria and performed 

well in the prediction of an external test set. The results reveal the role of size and steric hindrance of the hydrophobic part of the extractant 

molecule, as well as the importance of electrostatics and charge transfer interactions in the distribution coefficient of uranyl cation. This 

information could be very useful to design the most efficient ligands and find new extractants for uranyl ion extraction.  
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INTRODUCTION 
 

      Solvent extraction methods which involve the 

distribution of different components between two immiscible 

solvents are one of the most convenient and suitable 

procedures for the separation of metal ions. This method is 

most widely used for the separation and preconcentration of 

elements [1]. Because of growing interest in developing 

efficient and selective chelating agents, this technique has 

become more useful in recent years to determine trace metals 

[2,3].  

      Due to the significant influence of structural aspects of 

the complexing extractant agents on the efficiency of solvent 

extraction, many investigations have been devoted to 

establishing methodologies for designing more efficient 

ligands possessing high affinity and selectivity to specified 

metal ions [4-6]. The design and development of new organic 

ligands for selective metal ions  recognition,  extraction, and  
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separation, is of great interest in several areas of separation 

science and technology. Molecular modeling approaches, as 

powerful tools, have great potential for in silico design of 

novel molecular ligands with specific properties in 

complexation processes and extraction systems of metal ions 

[7,6,8,9]. Quantum mechanics [10,11], force-field molecular 

modeling [12], dynamic simulations [13,14], and quantitative 

structure-property/activity relationships (QSPR/QSAR) are 

three theoretical approaches that can be used for computer-

aided designs of new extractants [15-17].  

      QSPR/QSAR studies, as progressive tools in the 

modeling and prediction of many physiochemical properties, 

allow cost savings by reducing the laboratory resources 

needed and the time required to investigate and design new 

compounds by desired properties [18]. QSAR techniques aim 

to develop consistent relationships between any property or 

activity and physicochemical properties for a series of 

compounds so that these "rules" can be used to evaluate new 

chemical entities [19]. Varnek and co-workers reported 

several investigations on QSPR and ''In Silico'' design of new  
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extractants for several extraction systems [20-23,8,9]. They 

also published a comprehensive chapter book on quantitative 

structure-property relationships in solvent extraction and 

complexation of metals [8] and reviewed publications on 

QSPR modeling of metal complexation and extraction. 

Recently, Changes and co-workers [24] published a 

comprehensive paper on the potential and limits of QSPR and 

molecular modeling methods for identifying new extractants.   

      Three-dimensional QSAR, which refers to the use of 

force field calculations to compute spatial properties of three-

dimensional structure (3D) of compounds, provides valuable 

information about the forces and interactions between two 

molecules [25,26] and is used as a powerful procedure in the 

design of new compounds of the desired property. The Grid 

Independent (GRIND) 3D-QSAR as an alignment-

independent, interpretable, and efficient procedure to 

compute descriptors derived from GRID molecular 

interaction fields, was proved relevant in diverse structure-

activity relationship studies [27,16]. 

      In previous attempts, we investigated the application of 

QSPR studies in the complexation of metal ions with crown 

ethers [28] and the separation factor of multidentate nitrogen 

heterocyclic ligands in the actinides/lanthanides separation 

process [29]. Herein, we report GRid-INdependent 

Descriptors (GRIND)-based 3D-QSPR and 2D-QSPR 

analysis to develop valid and predictive QSPR models and 

estimate the distribution coefficient for the complexes of 

uranyl cation with phosphoryl-containing podand ligands. 

  
MATERIALS AND METHODS 
 

      Chemical structures, experimental and predicted 

distribution coefficients (logD) of U(VI) extracted by 

phosphoryl-containing podands. 

      The experimental data of distribution coefficients (logD) 

of uranyl cation extracted from 2 M HNO3 aqueous solution 

in 1,2-dichloroethane by podands (0.01 M) at 291 oK were 

taken from [30]. The dataset includes 40 phosphorus-

containing ligands whose chemical structures and 

experimental logD values are shown in Table 1. We also used 

the compound of the “Blind Test” set of Varnek et al. work 

[23] as an external set to validate the QSPR models obtained. 

Table 1 displayed the chemical structure of phosphoryl- 

containing  podand  ligands  along  with  their  experimental 

 

 

logD values.  

      The three-dimensional structure of the molecules                     

was constructed using the standard tools available in                          

SYBYL 7.3 molecular modeling package. Energy 

minimization was performed using the Tripos force                  

field with a distance-dependent dielectric and the Powell 

conjugate gradient algorithm with a convergence criterion of 

0.001 kcal mol-1 Å-1. Partial atomic charges were calculated 

using the Gasteiger-Hückel method.   

     GRIND was calculated automatically using the software 

Pentacle, version1.05 (Molecular Discovery Ltd., Oxford, 

UK). The Pentacle software uses alignment-independent 

descriptors derived from GRID molecular interaction fields 

(MIF). In this study, we generated MIFs for DRY, N1, O, and 

TIP probes defined as follows: the DRY probe represents 

hydrophobic interactions, N1 (amide) and O (carbonyl) 

probes represent hydrogen bond donor and acceptor groups, 

respectively, and the TIP probe represents a shape-field. All 

molecular interaction fields were computed with a grid 

resolution of 0.5 Å with a smoothing window of 0.8 Å. 

AMANDA algorithm [31] was used for the extraction of 

nodes from the obtained MIF, the distance and relative 

position of nodes were described by MACC2.  

      The GRIND working procedure involves three steps: (a) 

computing a set of molecular interaction fields (MIFs), (b) 

filtering the MIFs to extract the most relevant regions, and (c) 

encoding geometrical relationships into GRIND by 

computing the product of the interaction energy for each pair 

of filtered points (nodes). When MIF is computed for the 

ligand molecules, the region showing favorable energies of 

interaction represents positions where ligand molecules 

would interact favorably with metal ions. Dragon software, 

version 6. (TALETE srl, Italy) has been used to compute 

molecular descriptors.  

      The generated descriptors were first analyzed for the 

existence of constant or near-constant variables and those 

detected were removed. In addition, to reduce redundancy in 

the descriptor data matrix, the correlation of the descriptors 

with each other and with the dependent variable (logD) was 

examined. Among the collinear descriptors (r > 0.9), those 

with the highest correlation with logD were retained and the 

others were removed from the data matrix. Subsequently, an 

enhanced replacement method (ERM) [32,33] and fractional 

factorial  design  (FFD) [34]  were  used to extract the  more  
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Table 1. Chemical Structures, Experimental and Predicted Distribution Coefficients (logD) of U(VI) Extracted by 
Phosphoryl-containing Podands 

No. Ligand structure LogD 

(Experimental) 

GRINd-3D-QSPR 

(Predicted) 

2D-QSPR 

(Predicted) 

 

1 

 
 

 

2.58 

 

2.66 

 

2.58 

 

2 

 

 

0.1 

 

0.26 

 

0.38 

 

3 

 

 

0.51 

 

0.69 

 

0.52 

 

4 

 

 

0.75 

 

0.59 

 

0.64 

 

5 

 

 

1.05 

 

1.06 

 

1.24 

 

6 

 

 

0.85 

 

0.73 

 

0.31 

 

7 
P

O
O

P

O

 

 

0.45 

 

0.32 

 

0.15 

 

8 

 

 

0.84 

 

0.98 

 

0.71 

 

9 

 

 

0.95 

 

1.12 

 

0.68 
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Table 1. Continued 

 

 

10 

 

 

1.20 

 

0.9 

 

0.88 

 

11 

 

 

0.33 

 

0.37 

 

0.47 

 

12 

 

 

0.42 

 

0.52 

 

0.14 

 

13 

 

 

0.47 

 

0.41 

 

0.23 

 

14 

 

 

0.67 

 

0.76 

 

0.78 

 

15 

 

 

0.02 

 

0.13 

 

0.22 

 

16 

 

 

0.26 

 

0.36 

 

0.31 
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   Table 1. Continued 

 

 

17 

 

 

0.26 

 

0.28 

 

0.32 

 

18 

 

 

0.31 

 

0.23 

 

0.04 

 

19 

 

 

-0.87 

 

-0.79 

 

0.01 

 

20 

 

 

0.62 

 

0.61 

 

0.76 

 

21 

 

 

0.30 

 

0.23 

 

0.48 

 

22 

 

 

-0.20 

 

-0.16 

 

0.16 

 

23 

 

 

1.20 

 

1.36 

 

1.23 

 

24 

 

 

0.65 

 

0.44 

 

0.3 

 
415 
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Table 1. Continued 
 

 

25 

 

 

1.98 

 

2.07 

 

2.13 

 

26 

 

 

1.42 

 

1.24 

 

1.42 

 

27 

 

 

1.67 

 

1.69 

 

1.77 

 

28 

 

 

0.16 

 

0.25 

 

0.5 

 

29 

 

 

1.72 

 

1.62 

 

1.71 

 

30 

 

 

1.16 

 

1.03 

 

1.18 

 

31 

 

 

1.62 

 

1.81 

 

1.17 
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Table 1. Continued 
 

 

32 

 

 

0.09 

 

-0.08 

 

-0.01 

 

33 

 

 

1.81 (0.05) 

 

1.42 

 

1.72 

 

34 

 

 

1.58 (0.05) 

 

1.11 

 

1.64 

 

35 

 

 

-0.27 (0.02) 

 

0.15 

 

0.43 

 

36 

 

 

0.39 (0.02) 

 

0.48 

 

0 

 

37 

 

 

-0.09 (0.01) 

 

0.16 

 

0.08 

 

38 

 

 

0.28 (0.02) 

 

0.39 

 

0.06 
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informative factors and generate a more predictive model. 

The FFD variable selection procedure was done as 

implemented in Pentacle software. Partial least square (PLS) 

regression analysis [35], and multi-linear regression (MLR) 

were used to predict the logD of U(VI) extracted by 

phosphoryl-containing podands. All calculations were 

performed in MATLAB (version 7.6.0., Math Works, Inc.).  

     
RESULTS AND DISCUSSION 
 
     The distribution coefficient represents the extraction 

ability and is defined as the ratio of metal ion concentration 

in the organic phase (Co) to that in the aqueous phase (C)            

(D = Co/C). As could be seen from Table 1, the structures of 

the ligands containing phosphine oxide groups with polyether 

linkers between P=O groups form a 1:1 complex uranyl 

cation. As mentioned above, structural aspects of the 

extractants play a key role in the separation processes and 

extraction efficiency. Molecular topology, the length of the 

polyether linkers, and the substituents at the phosphorus 

atoms of phosphoryl-containing podands have a significant 

effect on the process of extraction and should be considered 

[36].  

      Combining chemoinformatics and 3D molecular 

modeling approaches might be very useful for the 

development of new metal binders [8]. It is widely believed 

that 3D descriptors should provide better descriptions of  the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

binding interactions. However, most 3D methods suffer from 

two constraints. First, the correct conformation of a molecule 

must be used, which may not even be the lowest energy 

conformation, to compare structurally different compounds; 

second, the compounds must be properly aligned, a step that 

is time-consuming and may introduce user bias [37]. The 

Grid Independent (GRIND) descriptors [27] were developed 

to overcome the alignment problem. Considering the high 

ability of GRIND variables to explain the relationships and 

identify important mutual distances between the molecular 

features of a compound, it is used to investigate the main 

interactions involved complexing of uranyl cation 

phosphoryl-containing podand ligands.  

      The GRIND descriptors were related to log values using 

partial least squares (PLS) analysis. The optimum number of 

PLS components (latent variables, LV) was chosen by 

monitoring changes in the model´s predicting index 

evaluated by applying the leave-one-out (LOO) cross-

validation (q2) procedure. Validation of the model was 

performed internally and externally using a cross-validation 

method and test set respectively. In the final model, a total of 

75 descriptors were derived after variable selection FFD. The 

PLS analysis resulted in a model with three latent variables 

and a correlation coefficient of calibration (R2
cal) of 0.932 

with a standard error of calculation (SEC) of 0.188. We tested 

the predictivity of the obtained models with a test set of       

eight  phosphoryl  ligands proposed by Varnek et al. [23] for  

   Table 1. Continued 
 

 

39 

 

 

-0.19 (0.01) 

 

0.07 

 

0.16 

 

40 

 

 

1.03 (0.05) 

 

0.8 

 

1.03 
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structure see Table 1 (compounds no. 33-40). The cross-

validation of the model by the LOO technique yielded q2 

values of 0.794 and by external validation of the model, the 

correlation coefficient of prediction (R2
Pred) value of 0.542 

with a standard error of prediction (SEP) of 0.539 was 

obtained. Figure 1 displayed the scatter plot of measured 

versus calculated logD of U(VI) extracted by phosphoryl-

containing podand obtained by 2D-QSPR and GRIND-3D-

QSPR models. 

      Figure 2 shows the PLS coefficient plot indicating             

the most important pairs of nodes that contribute                    

negatively or positively to the logD values of U(VI)               

extracted by phosphoryl-containing podands. The five most 

significant GRIND descriptors with the highest impact on 

logD with their coefficient in the PLS model are                

indicated in Fig. 2. To gain a deeper insight into the           

model, the variables with the highest impact on logD         

values were inspected in more detail. The largest peak           

related to cross-correlogram DRY-TIP. Variable 421,     

DRY-TIP: distance 2.8-3.2 Å, explained the  largest  impact 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on logD with an inverse relationship. As mentioned above, 

the DRY probe represents hydrophobic interactions and            

the  TIP  probe  displays the  shape  and  size of  the  ligands. 
 
 

Fig. 1. Scatter plot of measured versus calculated distribution 

coefficients (logD) of U(VI) extracted by phosphoryl-

containing podands obtained by 2D-QSPR and GRIND-3D-

QSPR models. 
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Fig. 2. The PLS coefficient plot of the GRIND variables used in the model. Different correlograms are separated by dotted 

lines and the pair probes are defined at the bottom. The most relevant variables are indicated by the variable number. 
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This indicated that adjacent a π system (aromatic backbone) 

and a bulky group in a distance of about 3 Å can reduce the 

interaction between the ligand molecules and metal ions. 

Phosphoryl legends like M22 and M28 with alkyl chains 

showed the highest value of variable 421 while molecules 

like M01 and M25 with the high logD values had the lowest 

value of this variable. It is well known that the DRY probe 

favorably interacts with different types of π systems 

(aromatic or vinyl type), but does not have a high affinity to 

aliphatic moieties. The next two effective peaks related to 

hydrogen bond acceptor-donor interactions, including 

variable 166, N1-N1: distance 11.2-11.6 Å with an inverse 

effect on logD and variable 96, O-O: distance 10.8-11.2 Å 

with a positive impact on logD values. The N1 probe 

represents the interaction with hydrogen bond (HB) donor 

groups whereas the O probe represents the interaction with 

hydrogen bond acceptor groups. Hydrogen bonding may be 

considered a hard acid-base interaction and strong hydrogen 

bonding usually requires a hard proton donor and acceptor 

[38]. Molecules with phenyl, as an electron-withdrawing 

group, directly connected to P=O make harder ligands than 

those ligands in which the phenoxy group was 

directlyconnected to the P=O group. Based on the hard-soft-

acid-base (HSAB) principle [39], hard acids like UO2
2+ prefer 

to coordinate the hard bases hence the molecules like M01 

and M05 with withdrawing phenyl groups are  harder  bases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than M28 and M19 with phenoxy groups, have stronger 

affinity towards hard metal ions and show higher logD 

values. Figure 3 shows a graphical display of this variable for 

the ligands with the highest logD (M01), and the lowest logD 

(M19) ligands. In contrast, the O probe representing the 

hydrogen bond acceptor showed a positive impact on logD 

values. Molecules of M04 and M03 with polyether spacer are 

softer bases than M30 and M26 and show less tendency to 

the hard metal ion and had low logD values. Figure 4 shows 

a graphical display of variable 96 for the ligands with the 

highest logD (M01), and the lowest logD (M19) ligands.  The 

two next significant variables are related to the N1 probe 

namely: variable 629, N1-TIP: distance 3.2-3.6 Å and 

variable 495, O-N1: distance 4.8-5.2 Å with positive and 

negative impact on logD values respectively. The importance 

of the N1-TIP variable indicates the favorable position of a 

hydrogen bond donor site or a polar group with respect to the 

size and shape of a phosphoryl ligand is significant in 

interactions with uranyl metal ions. Variable 495, O-N1: 

distance 4.8-5.2 Å indicated that adjacent of the donor and 

acceptor groups in the distance of about 5 Å can reduce the 

interaction between the ligand molecules and uranyl metal 

ions and decrease the logD values. 

      We also developed some simple, valid, and predictive 

QSPR models, able to correlate and predict logD values                    

of   U(VI)   extracted   by   phosphoryl-containing   podands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    
(A)                                                                                         (B) 

Fig. 3. Graphical display of GRIND variable 166, N1-N1: distance 11.2-11.6 Å for A: the most efficient (M01) and B: the 

least efficient (M019) phosphoryl-podand ligands. 
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Statistical characteristics of the best MLR models selected by 

the ERM feature selection along with the equations of QSPR 

models shown in Table 2. The predicted values of the logD 

values calculated from the five-variable MLR model are 

presented in Table 1.  

      Referring to the rule of thumb of “five or six data points 

per descriptor” [40], we calculated different models by 

increasing the number of involved descriptors up to five 

descriptors. The first significant descriptor selected by ERM 

was Mor17m (3D-MoRSE-signal 17/weighted by atomic 

masses) with a negative impact and high correlation (r ≈ 0.6) 

of this variable with logD. The appearance of a 3D-MoRSE 

descriptor that encodes the 3D structure of a molecule reveals 

the  role  of   steric   interactions  of   phosphoryl   ligands in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

complexing with uranyl ions and logD. Two topochemical 

Burden eigenvalues descriptors [41] including BEHm1 and 

BEHm2 (highest eigenvalue no.1 and 2 of Burden 

matrix/weighted by atomic masses respectively) and three 2D 

autocorrelations namely GATS2m, GATS3m, and GATS4m 

(Geary autocorrelation-lag 2, 3 and 4/weighted by atomic 

masses respectively), which explain the topological structure 

of a molecule were involved in the QSPR models [42]. 

Maximal electrotopological negative variation (MAXDN) 

shows an inverse effect on logD. It represents the maximum 

negative intrinsic state difference in the molecule and can be 

related to the nucleophilicity of the molecule [43]. On the 

other hand, the MAXDN descriptor could simply be related 

to the  electron-donating  abilities  of  phosphoryl  ligands in  

             
(A)                                                                                                        (B) 

Fig. 4. Graphical display of GRIND variable 96, O-O: distance 10.8-11.2 Å for A: the most efficient (M01) and B: the 

least efficient (M019) phosphoryl-podand ligands. 

 

 

Table 2. The Performance of 2D-QSPR Statistical Parameters 

 

 SEC SEP R2
cal R2

pred Q2 R2
adj Equation 

1 0.556 0.544 0.352 0.670 0.277 0.330 logD = -0.364-0.762 Mor17m 

2 0.385 0.531 0.689 0.771 0.563 0.667 logD = 54.766-12.326 BEHm2+2.78 GGI9 

3 0.285 0.552 0.829 0.624 0.768 0.811 
logD = -76.71+18.15BEHm1 

-3.967GATS3m+1.924GATS4m 

4 0.277 0.397 0.840 0.769 0.778 0.816 
logD = -68.522+17.553 BEHm1-2.189 GATS3m 

-2.1099 GATS2m-34.514 Qmean 

5 0.244 0.357 0.875 0.805 0.799 0.852 
logD = -65+1.882GGI9-2.292 GATS2m 

-1.253 MAXDN+15.393 BEHm1-9.3 qnmax 

6 0.265 0.358 0.823 0.754 0.732 0.796 PLS model with 4 latent variables 
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complexing with U(VI). The topological charge index of 

order 9 (GGI9), mean absolute charge (Qmean) and maximum 

negative charge (qnmax) explain the importance of 

electrostatics and charge transfer interactions in the 

distribution coefficient of U(VI) extracted by phosphoryl-

containing podands. 

     The PLS analysis on 16 Dragon selected descriptors, 

resulted in a model with four latent variables and correlation 

coefficient of calibration (R2
cal) of 0.791 with a standard error 

of calculation (SEC) of 0.220, and a cross-validated of                     

q2 = 0.732, and significance value (F) = 801.7 

     As mentioned above we checked the predictivity power of 

models obtained with a test set of eight phosphoryl ligands 

proposed by Varnek et al. [23]. The predictive ability of the 

GRIND was poor (R2
Pred = 0.542), but the performance of 

most 2D-QSPR models (Table 2) in the prediction of the 

external test set was higher than GRIND 3D-QSPR.  

      The applicability domain (AD) is a theoretical region in 

the space defined by the variables of the model and the 

modeled response, for which a given QSPR should make 

reliable predictions [44]. The analysis of AD of the ERM-

PLS model and the reliability of the predictions are verified 

by the leverage approach, which is based on computing the 

leverage, h*, for each compound for which the QSPR model 

is used to predict the property under study [45]. The warning 

leverage is generally fixed at 3k/n, k being the number of 

model parameters and n being the number of training               

set compounds. The analysis  of the applicability  domain of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRIND and the five-variable QSPR model displayed in          

Fig. 5. Figure 4A reveals the presence of just one chemical 

outlier (M35) of the GRIND model. 2D-QSPR model showed 

two response outliers namely M35 of the external test set and 

M19 of the train set. Both models displayed no structure-

influential compound for the training set and prediction set 

(Fig. 5B). The statistics of the models were not significantly 

affected when omitting these compounds.  

      We also internally validated the models obtained by the 

Y-randomization test. The randomization technique consists 

of giving random values to the dependent variable and 

constructing a model with the real input descriptors. This 

randomization is repeated several times, and the resulting 

data are trained against real independent variables [46]. The 

y-randomizations performed imply that acceptable models 

were obtained for the given data sets by the current modeling 

method and they did not show any chance correlation [47]. 

The average values of R2 and Q2 (50 times) resulting from the 

y-randomization test for the GRIND model were 0.321 ± 

0.094 and 0.052 ± 0.038 respectively. For the five-variable 

QSPR model, the R2 of 0.287 ± 0.124 and Q2 of 0.078 ± 0.054 

from the y-randomization test were achieved.   

      Table 3 shows the statistical results of rm
2                            

metrics, Golbraikh, and Tropsha criteria for validation                     

tests of two 2D-QSPR and 3D-QSPR models. Predictive           

and reliable models are those with average rm
2 values above                

the cutoff  of 0.5 and with an Δr2
m value lower than 0.2 [48].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Plot of standardized residuals versus leverages for A: GRIND B: 2D-QSPR models. The dotted lines represent ±2 

studentized residual, dash line represents warning leverage.  
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For regressions through the origin, i.e. predicted versus 

observed activities, or observed versus predicted activities, at 

least one, but preferably both of the correlation coefficients 

for r0
2 or r0'2 should be near r2 [49,50]. Taking Table 3 into 

consideration, all statistical findings from our models met 

Golbraikh and Tropsha criteria, demonstrating the models' 

good predictive capacity.  

 
CONCLUSIONS 
 

      From the GRIND variables involved in the PLS model 

the identification of some key molecular features and their 

position in the extractants' structure, which is crucial in the 

complexation and extraction process, would be possible. We 

also developed some simple, valid, and predictive 2D-QSPR 

models, able to correlate and predict the distribution 

coefficient of phosphoryl-podands in the extraction of uranyl 

cation aqueous solution in 1,2-dichloroethane. The 

performance of 2D-QSPR in the prediction of the external 

test set was higher than GRIND 3D-QSPR. 

      Considering the variables involves in models obtained, 

it’s concluded that steric hindrance, electrostatic forces, 

charge transfer interactions, and electron-donating abilities of 

extractant molecules had important impacts on the 

distribution coefficient of U(VI) extracted by phosphoryl 

ligands. The obtained results could be led to the design and 

development of new highly efficient extracts which allow 

cost savings by reducing the laboratory resources needed and 

the time required to investigate and design new compounds 

by desired properties.  
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