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 In this research, QSAR study has been carried out on quinolizidinyl derivatives as potent inhibitors of Acetyl and butyrylcholin esterase 
in Alzheimer’s disease. Despite significant research efforts in industry and academia, there are currently no diseases modifying therapies 
available to treat this illness. Significant evidence suggests that the pathology of AD is linked to generation of β-amyloid peptides (Aβ) 

through proteolytic processing of amyloid precursor protein (APP). 
 Genetic algorithm (GA), Jack-Knife and stepwise multiple linear regressions (stepwise-MLR) were used to create non-linear and linear 
QSAR models. The root-mean square errors of the training set and the validation  set for GA-ANN model using Jack-Knife method, were 
0.1406, 0.2165 and R2 was 0.90. Also, the R and R2 values in the gas phase were obtained as 0.88 and 0.78 from GA-stepwise MLR model, 
respectively. Also, we suggest that compounds No. 4, 6, 10, 14, 24, 26 and 34 have the most appropriate structure for the design of drugs to 
pharmacists. Electronegativities, atomic polarizability and atomic van der Waals volumes were important descriptors in our study. 
Geometry optimization of compounds was carried out using the B3LYP method employing a 6-31G (d) basis set. 
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INTRODUCTION 
 
 Alzheimer’s disease (AD) has become the sixth leading 
cause of death in the United States and is the most common 
form of dementia in the elderly [1,2].  
 The inhibition of acetylcholinesterase (AChE), that is 
responsible for the breakdown of acetylcholine (Ach), has 
proven as a successful approach to relieve some cognitive 
and behavioral symptoms of AD [3,4]. In advanced AD, 
AChE levels in the brain are declining, but a progressive 
increase (up to 90%) of butyryl cholinesterase (BChE) is 
observed, which is able, even at lower rate, to hydrolyze 
Ach [5,6]. 
 In computational chemistry, prediction of biological 
activity of compounds based on QSAR studies substantially 
increases   the    potential    of   work,   avoiding   time   and 
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consuming experiments. QSARs are among the important 
applications of chemometric tools with an objective of 
development of predictive models which can be used in 
different areas of chemistry including medicine, agriculture, 
environment, materials, etc. [7]. QSARs describe 
correlations between various physico-chemical properties of 
a chemical (usually known referred to as descriptors of 
molecular structures of chemicals) and their observed or 
predicted biological activities. QSARs generally assume a 
common mechanism behind the biological activity of a 
structurally/functionally related set of chemicals [8].  
 Molecular descriptors are numerical values obtained by 
the quantification of various structural and physicochemical 
characteristics of the molecule. It is envisaged that 
molecular descriptors quantify these attributes so as to 
determine the behavior of the molecule and the way the 
molecule interacts with a physiological system. Since the 
exact  mechanism   of  drug   activity  is  unknown  in  many  
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cases, it is desirable to start with descriptors spanning as 
many attributes of the molecules as possible and then assess 
their ability to predict the desired activity/property.  
 

THEORY 
 
 The chemical structure is represented by numerical 
entities called molecular descriptors, which are used to 
describe different characteristics of a certain structure to 
obtain yield information about the activity being studied [9].  
We can also develop a kind of computer program with 
network topology called artificial neural networks (ANN) 
that after adequate training learns to predict target proteins 
for a given drug. It means, ANNs are network-like software 
that may use as inputs of topological indices and/or physico 
chemical parameters calculated in the previous steps to 
predict which molecular structures or network-like 
structures, present a desire property or not [10,11]. The 
ANN are known as a good method in expressing highly 
non-linear relationship between the input and output 
variables, hence, greater interests were attracted in applying 

them to the pattern classification of complex compounds.  
A genetic algorithm maintains a population of candidate 
solutions for the problem at hand, and makes it evolve by 
iteratively applying a set of stochastic operators. GAs are 
stochastic optimization methods that provide powerful 
means to perform directed random searches in a large 
problem space as encountered in chemometrics and drug 
design [12,13]. 
 The properties that can be obtained experimentally, e.g., 
biological activity or toxicity are another expression of the 
molecular properties. These observed properties are related 
back to the intrinsic properties to predict the behavior of a 
molecule from its structure and physico-chemical 
properties. Construction of a quantitative/qualitative model 
that describes this relationship is the main goal of any 
quantitative/qualitative structure-activity relationship 
(QSAR) study. In this context, the chemometric calibration 
techniques are highly valued. Specifically principal 
component regression (PCR) and partial least squares 
regression (PLS) have become the usual methods of choice 
where a large number of descriptors are used. In addition to 
the quantitative issues, one is interested in identifying 
groups of molecules with similar properties as quantified by  

 
 
a set of molecular descriptors or by a certain observed 
property (e.g., biological activity, toxicity). Cluster analysis 
and principal component analysis have proven to be 
excellent methods for the exploration and visualization of 
the huge numbers of descriptor data generated, whereas 
with classification and/or discriminant methods one can 
create logic rules for the classification of molecules. 
 The PLS method uses this data matrix to generate a 
QSAR model. PLS extracts principal component-like 
vectors (latent variables) from the matrices of independent 
and dependent variables. This method takes a matrix 
containing a large number of potentially useful structural 
descriptors, which can be highly inter-correlated, and offers 
a correlation using the latent variables. The optimum 
number of latent variables is determined by cross-validation 
[14-17]. The aim of this study is to assess QSAR models 
reliability, using GA-ANN methods for prediction of new 
anti-Alzheimer compounds. 
 The statistical model for multiple-regression is a 
extension of that for simple linear regression. The response 
variable, denoted by Y, is measured along with a set of 
predictor variables, denoted by X1, X2,…;Xp where p is the 
number of predictor variables. The formal statistical model 
is: 
 
 Yi = β0 + β1Xi1 + β2Xi2 + … + βpXip + ɛi                      (1) 
                                                                                 
where the unknown parameters are the set of β´s. The 
deviation between the observed value of Y and the predicted 
value from the regression equation, ɛi is distributed as a 
Normal distribution with a mean of 0 and an (unknown) 
variance of σ2. This is often written using a short hand 
notation in many statistical packages as: Y = X1, X2,…Xp 
where the intercept (β0) and the residual variation (ɛ) are 
implicit. This can also be written using matrices as 
 
 Y = X β + ɛ                                                                   (2) 
 
where Y is an n × 1 column vector, X is an n × (p + 1) 
matrix [don’t forget the intercept column] of the predictors, 
β is a (p + 1) × 1 column vector (the intercept β0, plus the p 
“slopes” β1;…;βp), and ɛ is a n × 1 vector of residuals that 
has a multivariate normal distribution with a mean of 0 and 
a covariance matrix of Iσ2 where I is the identity matrix. 
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 The SVD (Singular Value Decomposition) algorithm is 
the most widely used algorithm to compute the estimated 
regression coefficients for MLR. 
 PLS has received a great amount of attention in the field 
of chemometrics. The algorithm has become a standard tool 
for processing a wide spectrum of chemical data problems. 
The success of PLS in chemometrics resulted in a lot of 
applications in other scientific areas including 
bioinformatics, food research,  medicine, pharmacology, 
social sciences, physiology-to name but a few [18-21]. 
 This part introduces the main concepts of PLS and 
provides an overview of its application to different data 
analysis problems. Our aim is to present a concise 
introduction, that is, a valuable guide for anyone who is 
concerned with data analysis. 
 Consider the general setting of a linear PLS algorithm to 
model the relation between two data sets (blocks of 
variables). Denote by X ⊂ RN an N-dimensional space of 
variables representing the first block and similarly by         
Y ⊂ RM a space representing the second block of variables. 
PLS models the relations between these two blocks by 
means of score vectors. After observing n data samples 
from each block of variables, PLS decomposes the (n × N) 
matrix of zero-mean variables X and the (n × M) matrix of 
zero-mean variables Y into the form 
 
 X = T PT + E 
 
 Y = UQT + F                                                                 (3) 
 
where the T, U are (n × p) matrices of the p extracted score 
vectors (components, latent vectors), the (N × p) matrix P 
and the (M × p) matrix Q represent matrices of loadings and 
the (n × N) matrix E and the (n × M) matrix F are the 
matrices of residuals. The PLS method, which in its 
classical form is based on the nonlinear iterative partial least 
squares (NIPALS) algorithm, finds weight vectors w, c such 
that 
 
[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr, Ys)]2     (4) 
                                                            
where cov(t,u) = tTu/n denotes the sample covariance 
between the score vectors t and u. The NIPALS algorithm 
starts with random initialisation of the Y-space score  vector  

 
 
u and repeats a sequence of the following steps until 
convergence. 
 
 1) w = XT u/(uT u)     
                                           
 2) ‖‖w‖‖ →1      
                                                 
 3) t = X w   
 
 4) c = YT t/(tT t) 
 
 5) ‖‖c‖‖ → 1 
 
 6) u = Y c 
 
Note that u = y if M = 1, that is, Y is a one-dimensional 
vector that we denote by y. In this case the NIPALS 
procedure converges in a single iteration. It can be shown 
that the weight vector w also corresponds to the first 
eigenvector of the following eigenvalue problem  
 
 XT Y YT X w = λ w                                                      (5) 
 
The X- and Y-space score vectors t and u are then given as 
 
 t = X w and u = Y c                                                      (6) 

 
where the weight vector c is define in steps 4 and 5 of 
NIPALS. Similarly, eigenvalue problems for the extraction 
of t, u or c estimates can be derived [22]. 
 The root mean square error is calculated for the 
prediction or validation samples (RMSEP) and for the 
calibration samples (RMSEC). 
RMSEC (all validation methods): 
 
 sYCalVar

yWeight
RMSEC Re1

                                    (7) 

                                                                                            
RMSEP (leverage correction and test set validation): 
 
 sYCalVar

yWeight
RMSEP Re1

                                    (8) 

 
RMSEP (cross validation): 
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   Table 1. Structures of Quinolizidinyl Derivatives [26] of bi- and Tricyclic Systems Used for QSAR Model Building 
                     

Nr Rʹ R Y X General structure 
1 H 

 
N S 

2 CF3  
 

N S 

3 CN 
 

N S 

4 H 
 

N S 

5 CF3 
 

N S 

6 H 
 

N O 

7 H 
 

N CH2 

8 H 
 

N  

9 H 
 

N  

10 H 
 

CH S 

11 H 
 

CH S 

12 H 
 

 S 

13 H 
 

C S 

14 H 
 

C  

15 H 
 

C  

 

 

16  
 

N  

17  
 

CH  

18  
 

CH  

 

19  
 

N  

20  
 

CH  

21  
 

C  

22  
 

CH  

 

23 H 

 

CH S 

24 H 
 

CH S 

25 H 
 

CH S 
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  Table 1. Continued 

26 H 
 

CH S 

27 OCH3 
 

CH S 

28 H 
 

CH S 

29 H 
 

CH S 

30 H 
 

CH S 

31 H 

 

CH S 

32 H 

 
CH  

33 H 
 

N  

34 H 

 

N  

35  

 

NH  

36  

 

NH  

37  

 

NH  

38  

 

NH  

39  
 

S  

 

40  
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MOLECULAR MODELING AND 
DESCRIPTORS GENERATION 
 
 The 3D structures of the investigated molecules were 
generated using the built optimum option of HyperChem 
software (version 6.0) and were shown in Table 1. Dragon 
program (version 3.0) was employed to calculate the 
molecular descriptors. Dragon software has been conceived 
to provide the user with a variety of molecular descriptors 
derived from different molecular representations, allowing 
the user to choose those molecular descriptors which are 
more suitable for his/her specific research. 
  All calculations were performed using Gaussian 03W 
program series. Geometry optimization of compounds was 
carried out by B3LYP method employing 6-31G basis set 
[23-25]. 
 In this study, the independent variables were molecular 
descriptors and the dependent variables were the actual  half  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
maximal inhibitory concentration (IC50) values. More than 
1498 theoretical descriptors were selected and calculated. 
These descriptors can be classified into several groups 
including: (i) Constitutional, (ii) Topological, (iii) 
Molecular walk counts, (iv) BCUT, (v) Galvez topological 
charge indices, (vi) Autocorrelations, (vii) Charge, (viii) 
Aromaticity indices, (ix) Randic molecular profiles, (x) 
Geometrical, (xi) RDF, (xii) MoRSE, (xiii) WHIM, (xiv) 
GETAWAY, (xv) Functional groups, (xvi) Atom-centred, 
(xvii)  Empirical and (xviii) Properties descriptors. 
 
STATISTICAL METHODS 
 
 For each compound in the training sets, the correlation 
equation was derived with the same descriptors. Then, the 
obtained equation was used to predict log(1/IC50) values for 
the compounds from the corresponding test sets. In the 
present work, the method of step wise multiple linear 
regression (stepwise MLR) was used to select the most 
appropriate descriptor of all investigated descriptors. Totally 
1498 descriptors were generated that  were  too  many to be  

                 Table 2. The Models and Descriptors Selected by GA-Stepwise 
                                MLR Method 
 

Model R R Square 

1 

2 

3 

4 

5 

6 

7 

0.638a 

0.710b 

0.782c 

0.813d 

0.837e 

0.866f 

0.883g 

0.406 

0.504 

0.612 

0.662 

0.701 

0.750 

0.780 
                          aPredictors:   (Constant),     HOMT.    bPredictors:    (Constant),  
                 HOMT,   D/Dr06.   cPredictors:   (Constant),  HOMT,  D/Dr06,  
                 Mor28p. dPredictors:  (Constant),  HOMT,   D/Dr06,   Mor28p,  
                 R2e.  ePredictors: (Constant),  HOMT,  D/Dr06,  Mor28p, R2e,  
                 R8u+. fPredictors: (Constant), HOMT, D/Dr06,  Mor28p,  R2e,  
                 R8u+, nDB. gPredictors: (Constant), HOMT, D/Dr06, Mor28p,  
                 R2e, R8u+, nDB, R7v+. hDependent Variable: Target. 
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       Table 3. Descriptors Values by GA-Stepwise MLR Model for Correlation 0.3 to up 
 

R7v+ nDB R8u+ R2e Mor28p D/Dr06 HOMT Molecule 
0.018 0.000 0.023 1.948 -0.317 127.462 11.524 1 
0.010 0.000 0.013 2.213 -0.122 164.097 11.560 2 
0.012 0.000 0.015 1.952 -0.187 236.297 11.945 3 
0.013 0.000 0.017 2.059 -0.365 227.810 11.524 4 
0.012 0.000 0.015 2.333 -0.388 280.777 11.560 5 
0.014 0.000 0.020 2.093 -0.238 227.810 11.524 6 
0.013 0.000 0.020 2.085 -0.311 227.810 11.436 7 
0.012 0.000 0.019 2.101 -0.139 187.487 11.333 8 
0.012 1.000 0.016 2.037 -0.011 187.487 11.142 9 
0.012 0.000 0.021 1.981 -0.273 174.840 11.524 10 
0.011 0.000 0.018 2.031 -0.172 227.810 11.699 11 
0.012 0.000 0.019 2.079 -0.386 240.040 11.596 12 
0.012 1.000 0.017 2.079 -0.362 227.810 11.436 13 
0.012 1.000 0.016 2.109 -0.394 187.487 11.400 14 
0.012 2.000 0.017 2.051 -0.161 187.487 11.070 15 
0.014 0.000 0.021 2.100 -0.250 178.739 11.080 16 
0.010 0.000 0.020 2.063 0.029 178.740 11.452 17 
0.009 0.000 0.022 2.070 -0.022 178.740 11.452 18 
0.013 0.000 0.019 2.079 -0.152 265.464 11.349 19 
0.014 0.000 0.017 2.048 -0.251 265.464 11.627 20 
0.013 1.000 0.018 2.052 -0.379 265.464 11.436 21 
0.011 0.000 0.018 2.110 -0.200 289.601 11.611 22 
0.013 1.000 0.021 1.894 -0.216 134.282 11.699 23 
0.012 1.000 0.015 2.137 -0.196 265.182 11.699 24 
0.012 1.000 0.015 2.128 -0.264 265.182 11.699 25 
0.011 1.000 0.015 2.127 -0.272 315.021 11.699 26 
0.008 1.000 0.012 2.202 -0.386 342.734 11.611 27 
0.010 1.000 0.018 2.140 -0.432 329.478 11.575 28 
0.011 1.000 0.017 2.118 -0.215 340.088 11.699 29 
0.011 1.000 0.014 2.148 -0.226 365.251 11.699 30 
0.011 1.000 0.014 2.132 -0.274 390.505 11.699 31 
0.010 1.000 0.014 2.171 -0.292 256.524 11.452 32 
0.012 2.000 0.016 2.166 -0.125 226.262 11.645 33 
0.012 2.000 0.017 2.133 -0.303 266.607 11.645 34 
0.010 4.000 0.018 2.068 -0.235 184.538 7.223 35 
0.011 4.000 0.013 2.232 -0.177 291.649 7.647 36 
0.011 4.000 0.011 2.265 -0.088 367.750 7.084 37 
0.009 4.000 0.012 2.213 -0.170 393.298 6.945 38 
0.010 4.000 0.016 2.232 -0.345 291.649 6.920 39 
0.010 3.000 0.015 2.319 -0.238 299.653 4.978 40 
0.008 3.000 0.013 2.298 -0.177 299.653 4.978 41 
0.008 3.000 0.014 2.337 -0.203 320.813 4.978 42 
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    Table 4. Experimental and Predicted Values of log(1/IC50) Using Jack-Knife, PCR and PLS Methods 

Molecule Observed 
log(1/IC50) 

Predicted 
Jack-Knife 

Predicted 
PCR 

Predicted 
PLS 

∆Ө 
Jack-Knife 

∆Ө 
GA-PCR 

∆Ө 
GA-PLS 

1 1.531 1.345 1.835 1.813 0.186 -0.304 -0.282 
2 1.653 1.621 2.011 1.981 0.032 -0.358 -0.328 
3 0.854 0.819 1.118 1.004 0.035 -0.264 -0.150 
4 1.591 1.617 1.432 1.467 -0.026 0.159 0.124 
5 1.771 1.647 1.566 1.621 0.124 0.205 0.150 
6 1.568 1.633 1.359 1.384 -0.065 0.209 0.184 
7 1.699 1.608 1.313 1.311 0.091 0.386 0.388 
8 1.740 1.633 1.683 1.572 0.107 0.057 0.168 
9 0.919 1.597 1.665 1.582 -0.678 -0.746 -0.663 
10 1.634 1.666 1.577 1.666 -0.032 0.057 -0.032 
11 0.845 1.489 1.465 1.500 -0.644 -0.620 -0.655 
12 1.623 1.795 1.596 1.738 -0.172 0.027 -0.115 
13 1.763 1.534 1.477 1.523 0.229 0.286 0.240 
14 1.663 1.705 1.687 1.623 -0.042 -0.024 0.040 
15 0.919 1.428 1.491 1.412 -0.509 -0.572 -0.493 
16 1.613 1.817 1.404 1.353 -0.204 0.209 0.260 
17 1.653 1.328 1.264 1.284 0.325 0.389 0.369 
18 1.681 1.450 1.583 1.564 0.231 0.098 0.117 
19 0.949 1.144 1.173 1.119 -0.195 -0.224 -0.170 
20 0.826 1.208 1.330 1.282 -0.382 -0.504 -0.456 
21 1.544 1.265 1.334 1.294 0.279 0.210 0.250 
22 1.653 1.276 1.161 1.170 0.377 0.492 0.483 
23 1.653 1.512 1.748 1.861 0.141 -0.095 -0.208 
24 1.690 1.568 1.522 1.565 0.122 0.168 0.125 
25 1.477 1.406 1.627 1.700 0.071 -0.150 -0.223 
26 1.505 1.639 1.378 1.448 -0.134 0.127 0.057 
27 1.672 1.626 1.236 1.292 0.046 0.436 0.380 
28 1.602 1.743 1.438 1.450 -0.141 0.164 0.152 
29 1.672 1.619 1.151 1.108 0.053 0.521 0.564 
30 0.833 1.021 0.988 0.981 -0.188 -0.155 -0.148 
31 0.756 0.862 1.007 0.932 -0.106 -0.251 -0.176 
32 1.532 1.772 1.456 1.424 -0.240 0.076 0.108 
33 1.623 1.253 1.801 1.862 0.370 -0.178 -0.239 
34 1.462 1.635 1.539 1.526 -0.173 -0.077 -0.064 
35 1.690 1.288 1.103 1.107 0.402 0.587 0.583 
36 0.863 1.230 0.772 0.804 -0.367 0.091 0.059 
37 -0.076 -0.234 0.379 0.381 0.158 -0.455 -0.457 
38 -0.658 -0.289 0.133 0.121 -0.369 -0.791 -0.779 
39 1.756 1.219 0.571 0.663 0.537 1.185 1.093 
40 0.820 0.735 0.331 0.244 0.085 0.489 0.576 
41 -0.456 -0.669 0.136 0.109 0.213 -0.592 -0.565 
42 0.079 -0.131 0.348 0.347 0.210 -0.269 -0.268 

    ∆Ө=   ӨObserved - ӨCalculated 
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fitted in our models. So, it was necessary to reduce the 
number of descriptors through an objective feature selection 
which was performed in three steps. First, descriptors that 
had the same value for at least 70% of compounds within 
the dataset were removed. In next step, descriptors with 
correlation coefficients less than 0.3 with the dependent 
variable were regarded redundant and removed. Since 
highly correlated descriptors provide approximately 
identical information, a pair wise correlation was 
performed. When their correlation coefficient exceeded 
0.90, one of two descriptors was randomly removed. 
Finally, Unscrambler program (version 9.7) was used for 
analysis of data and statistical methods. 
 
RESULTS AND DISCUSSION 
 
 In the present study, two linear and non-linear variable 
selection methods were used to select the most significant 
descriptors. Based on the types of variable selection method 
and also the types of the feature mapping technique, these 
models can be shown as MLR-ANN, GA-MLR and GA-
ANN. The models and descriptors selected by GA-MLR 
method are shown in Table 2. Also, the values for each 
molecular descriptors selected by GA-MLR method are 
shown in Table 3. 
 The prediction of log(1/IC50) using a Jack Knife, PCR 
and PLS methods and also the difference between observed 
and  predicted  values  are  given  in Table 4. The  GA-ANN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
was used to construct a quantitative relation between 
activities of quinolizidinyl derivatives analogues and their 
calculated descriptors (Fig. 1). The main selected 
descriptors using GA-MLR models are shown in Table 5. 
The statistical parameters of the QSAR models with 
different methods are compared in Table 6. According to 
the results of the Jack-Knife method, the following 
compounds have the smallest difference between the 
observed and predicted values exist and are proposed for 
drug design. 
 The seven most significant descriptors which were 
selected by GA-stepwise MLR are as follows: 
 
 HOMT, D/Dr06, Mor28p, R2e, R8u+, nDB, R7v+. 
 
MoRSE descriptors (3D Molecule Representation of 
Structures based on Electron diffraction) are derived from 
Infrared spectra simulation using a generalized scattering 
function. 
 Harmonic Oscillator Model of Aromaticity index 
(HOMA) index is based on the degree of alternation of 
single and double bonds, measuring the bond length 
deviations from optimal lengths attributed to the typical 
aromatic state. 
 Appropriate descriptors were obtained dusing GA-ANN 
model, which describes the characteristics of atomic mass 
and Randic shape index for quinolizidinyl derivatives, and 
are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

5

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121

Fr
eq

ue
nc

y

Descriptor
 

Fig. 1. The results of GA-ANN for correlation0.3 to up. 
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 PW2, MATS4m, Mor15m, G1u. 
 
Molecular Path/Walk Index is defined as the average sum of 
atomic path/walk indices of equal length. 
 
CONCLUSIONS 
 
 QSAR study has been carried out on quinolizidinyl 
derivatives as potent inhibitors of Acetyl and Butyrylcholin 
esterase  in  Alzheimer’s  disease.  The   GA-stepwise  MLR  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
selected descriptors were used as inputs for the construction 
of ANN model. As can be seen from Table, 
electronegativities, atomic polarizability and atomic van der 
Waals volumes were important descriptors in our study. 
 In the present study, GA-ANN (Jack-knife) as the most 
appropriate method for the correlation, because it has the 
highest value of R2and lowest RMSE. We suggest that 
compounds No.4, 6, 10, 14, 24, 26 and 34 have the most 
appropriate structure. 

   Table 5. The Mean of Selected Descriptors 
 

Descriptor symbol Descriptor group Meaning 

HOMT Geometrical (3D) HOMA total (trial) 

D/Dr06 Topological (2D) Distance/detour ring index of order 6 

Mor28p 3D MoRSE 3D-MoRSE-signal 28/weighted by atomic polarizabilities 

R2e GETAWAY (3D) R autocorrelation of lag 2/weighted by atomic Sanderson 

electronegativities 

R8u+ GETAWAY (3D) R maximal autocorrelation of lag 8/unweighted 

nDB Constitutional (0D) Number of double bonds 

R7v+ GETAWAY (3D) R maximal autocorrelation of lag 7/weighted by atomic van der 

Waals volumes 

PW2 Topological (2D) path/walk 2-Randic shape index 

MATS4m 2D autocorrelations Moran autocorrelation -lag 4/weighted by atomic masses 

Mor15m 3D-MoRSE 3D-MoRSE-signal 15/weighted by atomic masses 

G1u WHIM 1st component symmetry directional WHIM index/unweighted 
 
 
              Table 6. The statistical Parameters of Different Constructed QSAR Models 
 

Prediction Calibration Prediction Calibration Method 

0.4687 0.5715 0.6407 0.3979 GA-PCR 

0.4370 0.6007 0.4744 0.3841 GA-PLS 

0.8969 0.2165 0.1406 GA-ANN Jack-Knife  
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