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      The anti-oxidant activities for a diverse set of flavonoids as TEAC (Trolox equivalent anti-oxidant capacity) assay were subjected to 
3D-QSAR (3-dimensional quantitative structural-activity relationship) studies using CoMFA (comparative molecular field analysis) and 
CoMSIA (comparative molecular similarity indices analysis). The obtained results indicated superiority of CoMSIA model over CoMFA 
model. The best CoMSIA model was developed by using hydrogen-bond donor (H-bond donor) and electrostatic field components. This 
model gave the cross-validated correlation coefficient, Q2 = 0.512, correlation coefficient, R2 = 0.950, standard error of prediction,            
SE = 0.284, and F = 47.3, for training set, and R2 = 0.922 and SE = 0.286, for test set indicating robustness and high prediction power of the 
developed model. The contour maps of electrostatic and H-bond donor fields of CoMSIA model provide interpretable and fruitful 
relationship between chemical structures and their anti-oxidant activities giving useful insight for designing new compounds with higher 
activity. 
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INTRODUCTION 
 
      Flavonoids are a broad class of low molecular weight, 
secondary plant phenolics that are characterized by the 
flavan nucleus. In the human diet, they are most 
concentrated in fruits, vegetables, teas and cocoa [1]. 
Flavonoids show many biological and pharmacological 
effects [2] and have been used as anti-inflammatory [1,3], 
anti-allergic [3], anti-microbial [1], estrogenic [1,4] anti-
HIV [5,6] and anti-cancer agents [7,8]. Recent interests in 
natural anti-oxidants have been stimulated by potential 
health benefits arising from the anti-oxidant activity of 
flavonoids [9-11]. Imbalance between generation and 
elimination of reactive oxygen species (ROS) such as 
peroxide, peroxyl radicals and hydroxyl radicals, leading to 
enhanced ROS level, may result in oxidative stress. Anti-
oxidants can protect cells against damaging effects through 
formation of phenoxy radicals, which combine  with  ROSs,  
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and terminate the unwanted free radical chain reaction in 
cells [12].  
      Anti-oxidants prevent some serious diseases like cancer, 
diabetes and immunodeficiency due to their capacity to 
inhibit oxidation of lipids, proteins and nucleic acids 
[13,14]. Flavonoids like many other poly phenols are very 
effective radical scavengers (chain-breaking antioxidants) 
since they donate easily their hydrogens or electrons to free 
radicals. Cytochromes P450 (CYPs), as hemoproteins, are 
the terminal oxidase enzymes in electron transfer chains. 
Hydroxylation of flavonoids by CYP1A isozymes yields 
dihydroxylated derivatives that retain the flavan nuclear 
structure. Flavonoids can inhibit various types of P450 
isozymes, including CYP1A. Interactions between 
flavonoids and cytochromes P450 (in oxidative stress), are a 
complex process and are reviewed elsewhere [17]. The 
propensity of a flavonoid to inhibit free-radical mediated 
events is governed by its chemical structure. Structure-
activity relationship (SAR) studies of flavonoids have 
indicated  the importance of the number and location of the  
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phenolic OH groups on their effective radical scavenging 
activity [15-17]. Moreover, it was indicated that methoxy 
groups introduce unfavorable steric effects and decrease 
anti-oxidant activity, whereas double bonds and carbonyl 
functional groups in the heterocycles or polymerization of 
the nuclear structure increase activity by affording a more 
stable flavonoid radical through conjugation and electron 
delocalization [16].  
      There are some methods to evaluate anti-oxidant 
activities of chemicals, in vitro, such as TEAC, DPPH and 
TRAP test. Trolox equivalent anti-oxidant capacity (TEAC) 
assay is one of the common experimental methods 
measuring the concentration of Trolox solution (in molar) 
with an equivalent anti-oxidant potential to a standard 
concentration of the compound under investigation. TEAC 
reflects the H-donating ability of anti-oxidants to scavenge 
the radical cation 2,2'-azino-bis (3-ethylbenzothiazoline-6-
sulphonic acid)(ABTS). Therefore H-donating ability of 
anti-oxidants can be measured quantitatively by 
spectrophotometric methods [18,19].  
      Due to the correlation between the structure and anti-
oxidant activity of organic compounds, QSAR approaches 
could be used for modeling, clarifying the radical 
scavenging mechanisms of anti-oxidants, and predicting 
their activity without using any chemicals and instruments 
[19]. In addition, developing QSAR models is fruitful to 
design and synthesize the specific compounds with a 
considerable anti-oxidant activity. In the recent years, 
researchers have used various descriptors for modeling and 
prediction of anti-oxidant activities of some chemicals. For 
example, Abreu et al. reported some QSAR models for 
predicting the radical scavenging capacity of diaryl 
benzothiophens derivatives using the partial least squares 
(PLS) method. They indicated that presence of 
electronegative and polarizable atoms in the structure could 
increase anti-oxidant activity of the studied chemicals [21]. 
In addition, we performed QSAR studies on the radical 
scavenging activities of various types of anti-oxidant 
families using multiple linear regressions (MLR) and a 
multilayer perceptron neural network (MLP-NN), 
separately. The obtained model had the statistics of 
correlation coefficient R2 = 0.968 and cross-validated 
correlation coefficient Q2 = 0.898 for the MLP-NN model, 
R2 = 0.902   and   Q2 = 0.862   for   the   MLR   model.   The 

 
 
obtained result indicated that the proposed models can be 
successfully used for prediction of radical scavenging 
activities of new antioxidants [21]. Recently, application of 
3D-QSAR modeling has been rapidly increased. Classical 
QSAR correlates biological activities of chemicals with 
their physicochemical properties or indicator variables 
encoding certain structural features of a molecule [22,23], 
while 3D-QSAR approaches consider interaction of 
compounds with their surrounding media besides structural, 
geometrical and electronic parameters, so represent better 
and interpretable models. Comparative molecular field 
analysis (CoMFA) and comparative molecular similarity 
analysis (CoMSIA) are two effective computer-aided 3D-
QSAR techniques deriving a correlation between a set of 
biologically active molecules and their 3D shape, 
electrostatic and hydrogen bonding characteristics and 
employ both interactive graphics and statistical techniques. 
There are some reports about prediction of anti-oxidant 
activity of chemicals by using CoMFA and CoMSIA 
methods. For example, Ramalkshmi et al. developed some 
models by using CoMFA method to investigate the anti-
oxidant capacity of polyphenols and reported R2 = 0.84 
[24]. In addition Jing et al. subjected 21 anthocyanins to 
CoMSIA and CoMFA analyses and reported R2 = 0.998 and 
R2 = 0.997 for these models, respectively [25]. In another 
work, Chen et al. performed the CoMSIA analysis on a set 
of 27 curcumin analogues with the radical scavenging 
activities resulting in a significant Q2 value of 0.784 for 
CoMSIA. [26]. The main aim of the present work is 
developing the 3D-QSAR models in order to correlate anti-
oxidant activity of a diverse set of flavonoids to their 
structural parameters and driving models that can predict 
the anti-oxidant activities of other flavonoids. 

i.       The data set consists of experimental anti-oxidant 
activities of a diverse set of flavonoid families including 
flavone, flavonol, flavanone, anthocyanin and 
anthocyanidin taken from the work of Rice-Evance [19]. 
The names of the studied flavonoids and their experimental 
and predicted values of TEAC (mM) are shown in Table 1.   
 
EXPERIMENTAL 
 
Data Set 
      The   anti-oxidant   activities  of  these  chemicals   were 
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        Table 1. The Experimental, CoMSIA Estimated, and their Residual Values of TEAC (mM) 

No. Name Experimental CoMSIA Residual 

1 Epicatechingallate 4.90 5.02 0.12 

2 Epigallocatechingallate 4.80 4.67 -0.13 

3 Quercetin 4.70 4.39 -0.31 

4a Delphinidin 4.44 3.66 -0.78 

5 Cyanidin 4.40 3.92 -0.48 

6 Epigallocatechin 3.80 3.45 -0.35 

7a Keracyanin 3.25 3.08 -0.17 

8 Myricetin 3.10 3.42 0.32 

9a Gallic acid 3.01 3.21 0.20 

10 Idein 2.90 3.51 0.61 

11 Morin 2.55 2.73 0.18 

12 Gallic acid methyl ester 2.44 2.29 -0.15 

13 Catechin 2.40 2.85 0.45 

14 Rutin 2.40 2.14 -0.26 

15 Apigenidin 2.35 2.15 -0.20 

16a Peonidin 2.22 2.33 0.11 

17 Luteolin 2.10 2.48 0.38 

18 Malvidin 2.06 1.97 -0.09 

19 Taxifolin 1.90 2.12 0.22 

20a Oenin 1.78 1.58 -0.20 

21 Luteolin-4'-glucoside 1.74 1.82 0.08 

22 Naringenin 1.53 1.69 0.16 

23 Apigenin 1.45 1.69 0.24 

24 Chrycin 1.43 1.14 -0.29 

25 Hesperitin 1.37 1.29 -0.08 

26 Kaempferol 1.34 1.24 -0.10 

27a Pelagonidin 1.30 1.43 0.13 

28 Hesperidin 1.08 1.14 0.05 

29 Luteolin-3',7-glucoside 0.79 0.45 0.34 

30 Narirutin 0.76 0.93 0.17 
        aRefers to the chemicals in the test set. 
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determined by TEAC assay and values were reported as the 
concentration of Trolox solution. The values of TEAC were 
ranged from 0.76-4.9 for narirutin and epicatechingallate, 
respectively.  
      The data set was divided into training and test set based 
on y sorting method (24 molecules in training set and 6 
molecules in the test set). In this way the structural diversity 
and wide range of activity in dataset were included in test 
set. To explore the way of molecules to cover the 
determined structural space, diversity analysis was 
performed for the data set based on decrypted algorithm by 
Luan et al. [27] and the calculated mean distances of 
samples in descriptors space were plotted versus the 
corresponding experimental data (Fig. 1). As show in this 
figure, the structures of the compounds are diverse in both 
sets and the training set with a broad representation of the 
chemistry space was adequate to ensure models’ stability 
and the diversity of test set can prove the predictive 
capability of the model. The 3D structures for all   
compounds were designed and their geometry were 
optimized using Hyperchem7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CoMFA and CoMSIA analyses 
      CoMFA is a versatile and powerful method in rational 
drug design and related applications. CoMFA samples the 
steric (Lennard-Jones) and electrostatic (Coulombic) fields 
surrounding a set of ligands and constructs a 3D-QSAR 
model by correlating these 3D steric and electrostatic fields 
with the corresponding biological activities. Partial least 
squares (PLS) analysis with a cross validation procedure is 
employed to select relevant components from the large set 
of CoMFA data to build up the best QSAR equation [28]. 
      CoMSIA is an extension of CoMFA methodology and 
differs only in the implementation of the fields [29,30]. In 
CoMSIA approach, hydrophobic, H-bond donor and H-
bond acceptor similarity fields are calculated in addition to 
the steric and electrostatic fields, providing a better 
interpretation of the correlation between the 3D-structures 
of the studied molecules and their activities. These fields are 
evaluated by PLS analysis similar to CoMFA. The obtained 
CoMFA and CoMSIA contour maps are used as visual 
guides for designing new and more potent radical 
scavenging compounds. 

 

Fig. 1. Scatter plot of normalized mean distance of chemicals versus experimental anti-oxidant values. 
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      All molecular modelings and 3D-QSAR calculations 
were constructed using the molecular modeling software 
package SYBYL-X 1.1 (Tripos Associates, Saint Louis, 
MO). Partial charge for each atom in all molecules was 
calculated by Gasteiger-Huckel charge with distance 
dependent dielectric. The energy minimizations were 
performed using Tripos force field and conjugate gradient 
method with convergence criterion of 0.001 kcal mol-1 and 
maximum iteration of 5000. Structural alignment is the 
most crucial step in the CoMFA and CoMSIA study. The 
optimized molecules were aligned based on common 
structure by Distill method as databases align function. The 
chemical having the most functional groups (Hesperidin) 
was selected as template structure [31-34].  
      In CoMFA, a grid box with grid spacing of 2.0 Å was 
generated around molecules in the training set based on the 
molecular volume of the structures. A sp3-carbon atom with 
a +1.0 unit charge was selected as a probe atom and the cut 
off for both steric and electrostatic fields was set to            
30 kcal mol-1. CoMSIA fields were explored using common 
probe atom and a box similar to CoMFA analysis. 
Attenuation factor was set to 0.4. PLS methodology was 
used for extraction latent variables of the obtaining fields 
and developing the 3D-QSAR models. For reducing noise 
and improving efficiency of CoMFA and CoMSIA models, 
the filtering columns were set to 2.0 and 4.1 kcal mol-1, 
respectively.  
      The optimum number of the PLS components (N) used 
to derive models was defined as the number of the 
components leading to the highest Q2 and the lowest SE. 
The Q2 values were derived after “leave-one-out” cross-
validation test. In this technique one compound is 
eliminated from the data set randomly in each cycle and the 
model is built using the rest of the compounds. The model 
thus formed is used for predicting the activity of the 
eliminated compound. This process is repeated until all the 
compounds are eliminated once. Based on the predicting 
ability of the model, the Q2 for the model is determined. 
This parameter is expressed as: 
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In Eq. (1), YExp and YPre are the experimental and  predicted 

 
 
anti-oxidant activity values, respectively and TrainY  is the 

mean of experimental value of the training set compounds. 
The values more than 0.5 indicate model's robustness.     
      Moreover the predictive capacity of QSAR models 
could be  judged based on R2 values, which is calculated 
according to the following equation [35]: 
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In the above equation, YExp and YPre indicate the 
experimental and predicted anti-oxidant activity values of 
the test set compounds, respectively. The statics of Q2 
defines the goodness of prediction, whereas the R2 indicates 
well fitting of the QSAR model. Also, Schüürmannet al. 
proposed the calculation of  Q2

Ext based on the prediction of 
test compounds from the following equation [34]: 
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      where YExp and YPre indicate experimental and predicted 
anti-oxidant activity values, respectively, and TestY  refers to 

the mean experimental anti-oxidant activity of the test set 
compounds. The value of Q2

 Ext differs from R2 only in the 
mean used in the denominator for calculation of the external 
predictive parameters. 

 
RESULTS AND DISCUSSION 
 
      The CoMFA analysis was performed to derive 3D-
QSAR model using electrostatic and steric fields. The 
performance of the models was evaluated based on the 
statistically significance of models by considering the 
highest values of Q2 and R2 and the lowest SE. Some statics 
of developed CoMFA model based on the six PLS latent 
variables are Q2 = 0.213, R2 = 0.85, SE = 0.263 for training 
set, and R2 = 0.083 and SE = 1.31 for test set. As can be 
seen, due to consideration of only steric (26.1%) and 
electrostatic (73.9%) fields, these statistical parameters 
indicate that CoMFA model was not successful in modeling 
and prediction of anti-oxidant activities of the studied 
flavonoids.  
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      In the next step, some CoMSIA models were developed 
using electrostatic, steric, hydrophobic, H-bond donor and 
H-bond acceptor fields. Various combinations of these 
fields to generate hybrid models that establish these models. 
The results of these models are indicated in Table 2. As can 
be seen in this table, the best CoMSIA model is developed 
based on the combination of electrostatic and H-bond donor 
fields (CoMSIA-ED) (No. 1). The model was built by six 
PLS latent variables. The predictive ability of this CoMSIA 
model was surveyed using the test set which provided the 
statistics of R2 = 0.922, SE = 0.286 and Q2

Ext = 0.638 
indicating the high predictive ability of the developed 
model. The percentage of the variance explained by H-bond 
donor and electrostatic fields are 68.3% and 31.7%, 
respectively.  
      Comparison of the statistics of CoMFA and CoMSIA 
models  indicate  the  superiority  of   CoMSIA  model  over  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CoMFA ones. CoMFA analysis does not consider H-bond 
interactions whereas according to the results of the best 
CoMSIA model, this field has highest contribution for 
developing a reliable model, which can better explain the 
relation between anti-oxidant activity of flavonoids and 
their structure. Therefore, this CoMSIA model was used for 
explaining the QSAR study and predicting the anti-oxidant 
activities of the examined chemicals. The experimental and 
predicted values of TEAC and their residuals (the 
differences between the experimental and the predicted 
values) for the best CoMSIA model are shown in Table 1. 
      The scattered plot of the experimental and predicted 
values of TEAC for molecules in the training and test sets 
are depicted in Fig. 2, which indicate a good correlation 
between these values. Figure 3 shows the plot of the 
residuals against the experimental values of the anti-oxidant 
activities of the studied chemicals. The random  distribution  

   Table 2. The Statistical Parameters of CoMSIA Models 

  Fraction of fields   Model 

No. 

Model 

name 

Q2 R2
 SE 

Steric Electrostatic Hydrophobic H-bond 

donor 

H-bond 

acceptor 

1 CoMSIA-ED 0.514 0.950 0.284 - 0.317 - 0.683 - 

2 CoMSIA-EH 0.382 0.390 0.850 - 0.587 0.403 - - 

3 CoMSIA-DA 0.412 0.916 0.403 - - - 0.712 0.288 

4 CoMSIA-HD 0.507 0.815 0.508 - - 0.285 0.715 - 

5 CoMSIA-EDA 0.504 0.873 0.48 - 0.290 - 0.480 0.230 

6 CoMSIA-EHD 0.493 0.850 0.504 - 0.280 0.200 0.520 - 

7 CoMSIA-SHD 0.462 0.930 0.382 0.193 - 0.180 0.627 - 

8 CoMSIA-EHDA 0.385 0.782 0.530 - 0.305 0.165 0.244 0.256 

 

9 CoMSIA-SEHDA 0.198 0.071 0.851 0.08 0.220 0.199 0.290 0.200 
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of the residuals on both sides of zero line indicates that 
there is not any systematic error in the developed mode. In 
the present work, the CoMFA and CoMSIA of anti-oxidant 
activities of this group of flavonoids have been modeled for 
the first time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CoMSIA Contour Maps 
      The results of CoMSIA model are usually represented as 
3D contour maps. These contour maps are useful for 
exploring and visualizing structure-activity relationship. 
The contour maps for the best CoMSIA model are shown in 

 

Fig. 2. The CoMSIA plot of the predicted TEAC versus experimental values. 

 

 
Fig. 3. Plot of residuals versus experimental values of TEAC. 
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Fig.4. (a) Epicatechingallate as the reference chemical for representing field. CoMSIA hydrogen bond donor contour  
          map; (b) cyan contours  represent areas where hydrogen bond donor group is favored and the  purple contours  
          shows unfavorable  areas for substitution of hydrogen bond donor  group. CoMSIA electrostatic contour map;  
         (c) the blue  contour  indicates  region  where  electropositive substituent  is favored  and red contour refers to  

           region where electronegative substituent is favored. 
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Fig. 4 by using the structure of the most active molecule 
(epicatechingallate (TEAC 4.9 mM)) as the reference 
structure (Fig. 4a). H-bond donor contour map (Fig. 4b) 
shows a big purple region on the rings C and A, which are 
considered as the unfavorable regions for H-bond donor 
groups for most of the flavonoids. For example, in 
epigallocatechingallate (TEAC 4.8 mM), substitution of a 
hydroxyl group on ring C leads to decrease the anti-oxidant 
activity in comparison with epicatechingallate. Similar 
effects are observed by insertion of a third hydroxyl group 
on ring C in myricetin (TEAC 3.1 mM) decreasing its 
activity in comparison with quercetin (TEAC 4.7 mM). 
However, a small cyan region near ring C indicates that 
substitution of H-donor groups on this ring enhances anti-
oxidant activity for some flavonoids. This effect is 
evidenced by comparison of epigallocatechin (TEAC 
3.8mM) with catechin (TEAC 2.8 mM). Comparison of the 
naringenin (TEAC 1.5 mM) structure with narirutin (TEAC 
0.76 mM) shows that replacement of glycoside group (with 
several hydroxyl groups) in the position 7 of ring A has a 
strong influence on decreasing anti-oxidant activity of 
narirutin. Similar effects are observed when methoxy group 
in ring A of hesperetin (TEAC 1.4 mM) is replaced with a 
glycoside group in hesperidin (TEAC 1.08 mM). 
      The electrostatic contour map of CoMSIA model in Fig. 
4c suggests that for increasing anti-oxidant activities of 
flavonoids, electronegative substituents (the red contours) 
should be located on the position 1 of the ring B and 
position 8 of the ring A for increasing anti-oxidant activities 
of flavonoids. This figure also indicates that electropositive 
substituents (the blue contours) should be located on the 
position 3 of ring B and the position 4' of ring C. For 
example, glycosylation of the position 3 of ring B in 
epigallocatechin (TEAC 3.8 mM) enhances activity of 
epigallocatechingallat to TEAC = 4.8 mM. In addition, 
insertion of a hydroxyl group on the position of 4' in ring C 
enhances the TEAC value of 2.5 mM for morin to 3.12 mM 
for myricetin. 
 
CONCLUSIONS 
 
      Most of flavonoid effects are originated from the ability 
to inhibit lipid peroxidation, chelate redox-active metals and 
attenuate other processes involving reactive oxygen species 

 
 
as anti-oxidants. The anti-oxidant activities of flavonoids 
are affected by their structural properties, so developing 3D-
QSAR models could be useful. In this study, CoMSIA 
analysis has been successfully applied to develop an 
interpretable 3D-QSAR model for prediction of anti-oxidant 
activity for a set of flavonoids. The obtained statistical 
parameters illustrate that the established CoMSIA model 
based on electrostatic and H-bond donor fields, is robust 
and reliable. The contour maps of fields provide enough 
information to understand relationships between structural 
features and anti-oxidant activities of the studied chemicals. 
Consequently, the present study gives the meaningful 
structural insights into possible modifications of flavonoids 
improving anti-oxidant activities for the future works.  
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