Removal of Dibenzothiophene Using Activated Carbon/γ-Fe2O3 Nano-Composite: Kinetic and Thermodynamic Investigation of the Removal Process

Document Type: Research Paper

Authors

1 Shahid Bahonar University of Kerman

2 Research Institute of Environmental Sciences

3 Environment Department, Research Institute of Environmental Sciences, International Center for Science, High Technology & Environmental Sciences, Kerman, Iran

4 Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran

Abstract

In the present study, removal of dibenzothiophene (DBT) from model oil (n-hexane) was investigated using magnetic activated carbon (MAC) nano-composite adsorbent. The synthesized nano-composite was characterized by FT-IR, FE-SEM, BET and VSM techniques. The MAC nano-composite exhibited a nearly superparamagnetic property with a saturation magnetization (Ms) of 29.2 emu g-1, which made it desirable for separation under an external magnetic field. The magnetic adsorbent afforded a maximum adsorption capacity of 38.0 mg DBT g-1 at the optimized conditions (adsorbent dose, 8 g l-1; contact time, 1 h; temperature, 25 °C). Langmuir, Freundlich and Temkin isotherm models were used to fit equilibrium data for MAC nano-composite. Adsorption process could be well described by the Langmuir model. Kinetic studies were carried out and showed the sorption kinetics of DBT was best described by a pseudo-second-order kinetic model. In addition, the MAC nano-composite exhibited good capability of recycling to adsorb DBT in gasoline deep desulfurization.

Keywords


[1] D.D. Beck, J.W. Sommers, C.L. DiMaggio, Appl. Catal., B 3 (1994) 205.
[2] A. Shamsi, Catal. Today 139 (2009) 268.
[3] J.J. Strohm, J. Zheng, C. Song, J. Catal. 238 (2006) 309.
[4] B.D. Gould, O.A. Baturina, K.E. Swider-Lyons, J. Power Sources 188 (2009) 89.
[5] L.J. Hoyos, H. Praliaud, M. Primet, Appl. Catal., A 98 (1993) 125.
[6] T. wang, A. Vazquez, A. Kato, L.D. Schmidt, J. Catal. 78 (1982) 306.
[7] P. Torres-Mancera, J. Ramírez, R. Cuevas, A. Gutiérrez-Alejandre, F. Murrieta, R. Luna, Catal. Today 107–108 (2005) 551.
[8] C. Song, Catal. Today 86 (2003) 211.
[9] J.N. Díaz de León, M. Picquart, L. Massin, M. Vrinat, J.A. de los Reyes, J. Mol. Catal. A: Chem. 363–364 (2012) 311.
[10] X. Li, J. Bai, A. Wang, R. Prins, Y. Wang, Top. Catal. 54 (2011) 290.
[11] H. Wang, R. Prins, J. Catal. 264 (2009) 31.
[12] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C. Gates, H. Kwart, J. Catal. 61 (1980) 523.
[13] H. Farag, K. Sakanishi, I. Mochida, D.D. Whitehurst, Energ. Fuel. 13 (1998) 449.
[14] S. Kumagai, H. Ishizawa, Y. Toida, Fuel 89 (2010) 365.
[15] I. Mochida, K. Sakanishi, X. Ma, S. Nagao, T. Isoda, Catal. Today 29 (1996) 185.
[16] F. van Looij, P. van der Laan, W.H.J. Stork, D.J. DiCamillo, J. Swain, Appl. Catal., A 170 (1998) 1.
[17] Y. Yoshimura, M. Toba, H. Farag, K. Sakanishi, Catal. Surv. Asia 8 (2004) 47.
[18] R.T. Yang, A.J. Hernández-Maldonado, F.H. Yang, Science 301 (2003) 79.
[19] L. Xiong, F.-X. Chen, X.-M. Yan, P. Mei, J. Porous Mat. 19 (2012) 713.
[20] Z.M. Sheng, J.N. Wang, Carbon 47 (2009) 3271.
[21] M. Baikousi, A.B. Bourlinos, A. Douvalis, T. Bakas, D.F. Anagnostopoulos, J. Tuček, K. Šafářová, R. Zboril, M.A. Karakassides, Langmuir 28 (2012) 3918.
[22] Z. Liu, Y. Song, Y. Yang, J. Mi, L. Deng, Mater. Res. Bull. 47 (2012) 274.
[23] Y. Zhai, Y. Dou, X. Liu, S.S. Park, C.-S. Ha, D. Zhao, Carbon 49 (2011) 545.
[24] A. Kraus, K. Jainae, F. Unob, N. Sukpirom, J. Colloid Interf. Sci. 338 (2009) 359.
[25] A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46 (2007) 1222.
[26] A. Afkhami, R. Norooz-Asl, Colloid. Surface. A 346 (2009) 52.
[27] A. Afkhami, R. Moosavi, J. Hazard. Mater. 174 (2010) 398.
[28] A. Afkhami, R. Moosavi, T. Madrakian, Talanta 82 (2010) 785.
[29] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Desalination 263 (2010) 240.
[30] A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H.A. Harouni, J. Geochem. Explor. 147 (2014) 151.
[31] E. Darezereshki, F. Tavakoli, F. Bakhtiari, A.B. Vakylabad, M. Ranjbar, Mater. Sci. Semicond. Process. 27 (2014) 56.
[32] E. Darezereshki, F. Bakhtiari, A.B. Vakylabad, Z. Hassani, Mater. Sci. Semicond. Process. 16 (2013) 221.
[33] M. Anbia, Z. Parvin, Chem. Eng. Res. Des. 89 (2011) 641.
[34] W. Yang, L. Liu, W. Zhou, W. Xu, Z. Zhou, W. Huang, Appl. Surf. Sci. 258 (2012) 6583.
[35] J. Cheng, S. Jin, R. Zhang, X. Shao, M. Jin, Micropor. Mesopor. Mat. 212 (2015) 137.
[36] J. Wang, F. Xu, W.-j. Xie, Z.-j. Mei, Q.-z. Zhang, J. Cai, W.-m. Cai, J. Hazard. Mater. 163 (2009) 538.
[37] S. Haji, C. Erkey, Ind. Eng. Chem. Res. 42 (2003) 6933.
[38] N. Farzin Nejad, E. Shams, M.K. Amini, J.C. Bennett, Fuel Process. Technol. 106 (2013) 376.