The Principles and Recent Applications of Bioelectrocatalysis

Document Type : Review

Authors

1 Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran

2 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

3 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

4 Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah Medical Sciences University, Tehran, Iran

Abstract

Bioelectrocatalysis is a phenomenon concerned with biological catalysts, which accelerate the electrochemical reactions. Bioelectrocatalysis has been widely explored by the research community in various directions. Enzymes can catalyze different chemical reactions in living organisms by enzymes as the most important biological catalysts. These enzymatic biocatalysts are commercially available and commonly called enzyme electrodes. Electron transfer between the active center of the enzyme and the electrode can be performed either by direct electron transfer (DET) or by means of mediators (i.e. mediated electron transfer (MET)), which are discussed in details in the presented review. Therefore, different strategies have been used to increase the efficiency and stability of bioelectrocatalysis. In this review, different strategies of the bioelectrode designs have been discussed and the application of the common bioelectrodes used in the biosensors have been presented in the various fields. Moreover, a summary of the research status in the applications of bioelectrocatalysis in biosensors and biofuel cells was provided.

Keywords


[1]       Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. Cai, Phys. Chem. Chem. Phys. 13 (2011) 4083.
[2]       J.A. Cracknell, K.A. Vincent, F.A. Armstrong, Chem. Rev. 108 (2008) 2439.
[3]       D. Chong, I.P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M.P. Soriaga, M.Y. Darensbourg, Dalton Transactions 21 (2003) 4158.
[4]       B.E. Barton, M.T. Olsen, T.B. Rauchfuss, Curr. Opin. Biotechnol. 21 (2010) 292.
[5]       M. Götz, J. Lefebvre, F. Mörs, A.M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Energy 85 (2016) 1371.
[6]       G. Guandalini, S. Campanari, M.C. Romano, Appl. Energy 147 (2015) 117.
[7]       M. Qadrdan, M. Abeysekera, M. Chaudry, J. Wu, N. Jenkins, Int. J. Hydrogen Energy 40 (2015) 5763.
[8]       S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Int. J. Hydrogen Energy 40 (2015) 4285.
[9]       G. Gahleitner, Int. J. Hydrogen Energy 38 (2013) 2039.
[10]    A. Varone, M. Ferrari, Renewable and Sustainable Energy Rev. 45 (2015) 207.
[11]    M. Rasmussen, S. Abdellaoui, S.D. Minteer, Biosens. Bioelectron. 76 (2016) 91.
[12]    D. Leech, P. Kavanagh, W. Schuhmann, Electrochim. Acta 84 (2012) 223.
[13]    M.T. Meredith, S.D. Minteer, Ann. Rev. Anal. Chem. 5 (2012) 157.
[14]    T. Ikeda, Electrochim. Acta 82 (2012) 158.
[15]    S. Calabrese Barton, J. Gallaway, P. Atanassov, Chem. Rev. 104 (2004) 4867.
[16]    S. Fukuzumi, Bull. Chem. Soc. Japan 79 (2006) 177.
[17]    B. Reuillard, S. Gentil, M. Carriere, A. Le Goff, S. Cosnier, Chem. Sci. 6 (2015) 5139.
[18]    V. Artero, M. Fontecave, Coordin. Chem. Rev. 249 (2005) 1518.
[19]    T.F.  Jaramillo,  J.  Bonde,  J.   Zhang,   B.-L.  Ooi,  K.
 
 
Andersson, J. Ulstrup, I. Chorkendorff, J. Phys. Chem. C 112 (2008) 17492.
[20]    M.C. Potter, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84 (1911) 260.
[21]    D.P. Hickey, R.D. Milton, M. Rasmussen, S. Abdellaoui, K. Nguyen, S.D. Minteer, Electrochemistry 13 (2015) 97.
[22]    M. Tarasevich, Bioelectrocatalysis, Comprehensive Treatise of Electrochemistry, Springer, 1985, pp. 231-295.
[23]    H.A.O. Hill, I. Higgins, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 302 (1981) 267.
[24]    L.C. Clark JR, R. Wolf, D. Granger, Z. Taylor, J. Appl. Physiol. 6 (1953) 189.
[25]    L.C. Clark Jr, C. Lyons, Annals of the New York Academy of Sciences 102 (1962) 29.
[26]    A.E. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D. Scott, A.P. Turner, Anal. Chem. 56 (1984) 667.
[27]    A.L. Ghindilis, P. Atanasov, E. Wilkins, Electroanalysis 9 (1997) 661.
[28]    Y. Degani, A. Heller, J. Phys. Chem. 91 (1987) 1285.
[29]    Y. Degani, A. Heller, J. Am. Chem. Soc. 110 (1988) 2615.
[30]    I. Willner, E. Katz, B. Willner, Electroanalysis 9 (1997) 965.
[31]    G.M. Whitesides, J.P. Mathias, C.T. Seto, Science 254 (1991) 1312.
[32]    R. Parsons, A.J. Bard (Ed.), Electroanalytical Chemistry, Vol. 11, Marcel Dekker, New York (1979), Elsevier, 1980.
[33]    G.G. Guilbault, Anal. Biochem. 14 (1966) 61.
[34]    S.R. Betso, M.H. Klapper, L.B. Anderson, J. Am. Chem. Soc. 94 (1972) 8197.
[35]    M. Tarasevich, V. Bogdanovskaya, Bioelectrochemistry and Bioenergetics 3 (1976) 589.
[36]    I. Berezin, V. Bogdanovskaia, S. Varfolomeev, M. Tarasevich, A. Iaropolov, Doklady Akademii Nauk SSSR 240 (1978) 615.
[37]    H.O. Hill, N. Walton, I. Higgins, FEBS Lett. 126 (1981) 282.
[38]    A.   Yaropolov,   A.    Karyakin,    S.  Varfolomeev,  I.
 
 
Berezin, Bioelectrochemistry and Bioenergetics 12 (1984) 267.
[39]    A. Karyakin, S. Morozov, E. Karyakina, N. Zorin, V. Perelygin, S. Cosnier, Hydrogenase Electrodes for Fuel Cells, Portland Press Limited, 2005.
[40]    R.A. Marcus, N. Sutin, Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 811 (1985) 265.
[41]    L. Dos Santos, V. Climent, C.F. Blanford, F.A. Armstrong, Phys. Chem. Chem. Phys. 12 (2010) 13962.
[42]    C.F. Blanford, C.E. Foster, R.S. Heath, F.A. Armstrong, Faraday Discussions 140 (2009) 319.
[43]    J.A. Cracknell, T.P. McNamara, E.D. Lowe, C.F. Blanford, Dalton Transactions 40 (2011) 6668.
[44]    N. Mano, Appl. Microbiol. Biotechnol. 96 (2012) 301.
[45]    K. Sakai, B.-C. Hsieh, A. Maruyama, Y. Kitazumi, O. Shirai, K. Kano, Sensing and Bio-sensing Research 5 (2015) 90.
[46]    K.V. Nguyen, Y. Holade, S.D. Minteer, ACS Catal. 6 (2016) 2603.
[47]    K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, K. Kano, ACS Catal. 7 (2017) 5668.
[48]    K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, K. Kano, Electrochem. Commun. 73 (2016) 85.
[49]    M. Kizling, R. Bilewicz, Chem. Electro Chem. 5 (2018) 166.
[50]    L.N. Pelster, S.D. Minteer, ACS Catal. 6 (2016) 4995.
[51]    A.J. Gross, X. Chen, F. Giroud, C. Travelet, R. Borsali, S. Cosnier, J. Am. Chem. Soc. 139 (2017) 16076.
[52]    N. Khadka, R.D. Milton, S. Shaw, D. Lukoyanov, D.R. Dean, S.D. Minteer, S. Raugei, B.M. Hoffman, L.C. Seefeldt, J. Am. Chem. Soc. 139 (2017) 13518.
[53]    M. Rafiee, F. Wang, D.P. Hruszkewycz, S.S. Stahl, J. Am. Chem. Soc. 140 (2017) 22.
[54]    F.-F. Cheng, T.-T. He, H.-T. Miao, J.-J. Shi, L.-P. Jiang, J.-J. Zhu, ACS Applied Materials & Interfaces 7 (2015) 2979.
[55]    K. Liu, C. Song, A. Lei, Org. Biomol. Chem. 16 (2018) 2375.
[56]    Y. Liu, E. Xiong, X. Li, J. Li, X. Zhang, J. Chen, Biosens. Bioelectron. 87 (2017) 970.
[57]    Y.-Y. Yu, C.X. Guo, Y.-C. Yong, C.M. Li, H. Song, Chemosphere 140 (2015) 26.
 
 
[58]    R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118 (2017) 38.
[59]    Y. Degani, A. Heller, J. Am. Chem. Society 111 (1989) 2357.
[60]    T.J. Ohara, R. Rajagopalan, A. Heller, Anal. Chem. 65 (1993) 3512.
[61]    N. Mano, J.L. Fernandez, Y. Kim, W. Shin, A.J. Bard, A. Heller, J. Am. Chem. Soc. 125 (2003) 15290.
[62]    R.D. Milton, D.P. Hickey, S. Abdellaoui, K. Lim, F. Wu, B. Tan, S.D. Minteer, Chem. Sci. 6 (2015) 4867.
[63]    M. Minson, M.T. Meredith, A. Shrier, F. Giroud, D. Hickey, D.T. Glatzhofer, S.D. Minteer, J. Electrochem. Soc. 159 (2012) G166.
[64]    S. Tsujimura, M. Fujita, H. Tatsumi, K. Kano, T. Ikeda, Phys. Chem. Chem. Phys. 3 (2001) 1331.
[65]    N. Mano, H.-H. Kim, A. Heller, J. Phys. Chem. B 106 (2002) 8842.
[66]    C. Liu, S. Alwarappan, Z. Chen, X. Kong, C.-Z. Li, Biosens. Bioelectron. 25 (2010) 1829.
[67]    B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 40 (2006) 5181.
[68]    G.M. Cooper, The Central Role of Enzymes as Biological Catalysts, Sinauer Associates, 2000.
[69]    J. Nelson, E.G. Griffin, J. Am. Chem. Soc. 38 (1916) 1109.
[70]    M. Cooney, V. Svoboda, C. Lau, G. Martin, S.D. Minteer, Energ. Environ. Sci. 1 (2008) 320.
[71]    J. Guesdon, Biochimie 74 (1992) 593.
[72]    T.T. Le, C.P. Wilde, N. Grossman, A.E. Cass, Phys. Chem. Chem. Phys. 13 (2011) 5271.
[73]    Z. Liu, J. Liu, G. Shen, R. Yu, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 18 (2006) 1572.
[74]    L. Giorno, R. Mazzei, E. Drioli, Membrane Operations: Innovative Separations and Transformations  (2009) 397.
[75]    B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink, Anal. Chem. 66 (1994) 1120A.
[76]    P. Pal, S. Datta, P. Bhattacharya, Sep. Purif. Technol. 27 (2002) 145.
[77]    M.M. Eldin, E. Seuror, M. Nasr, H. Tieama, Appl. Biochem. Biotechnol. 164 (2011) 45.
[78]    R.A. Sheldon, Adv. Synth. Catal. 349 (2007) 1289.
 
 
[79]    J.E. Dueber, G.C. Wu, G.R. Malmirchegini, T.S. Moon, C.J. Petzold, A.V. Ullal, K.L. Prather, J.D. Keasling, Nat. Biotechnol. 27(8) (2009) 753.
[80]    R. Simon, N. Richter, E. Busto, M. Fischereder, CS Fuchs, H. Lechner, FG Mutti, D. Pressnitz, A. Rajagopalan, JH Sattler, RC Simon, E. Siirola, Org. Process Res. Dev.17 (2013) 751.
[81]    R. Freeman, E. Sharon, R. Tel-Vered, I. Willner, J. Am. Chem. Soc. 131 (2009) 5028.
[82]    F. Wang, C.-H. Lu, I. Willner, Chem. Rev. 114 (2014) 2881.
[83]    J. Fu, M. Liu, Y. Liu, H. Yan, Accounts Chem. Res. 45 (2012) 1215.
[84]    G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, J. Electroanal. Chem. 443 (1998) 155.
[85]    K. Van Nguyen, F. Giroud, S.D. Minteer, J. Electrochem. Soc. 161 (2014) H930.
[86]    M. Tarasevich, Bioelectrochemistry and Bioenergetics 6 (1979) 587.
[87]    O. Lazarus, T.W. Woolerton, A. Parkin, M.J. Lukey, E. Reisner, J. Seravalli, E. Pierce, S.W. Ragsdale, F. Sargent, F.A. Armstrong, J. Am. Chem. Soc. 131 (2009) 14154.
[88]    K.A. Vincent, X. Li, C.F. Blanford, N.A. Belsey, J.H. Weiner, F.A. Armstrong, Nat. Chem. Biol. 3 (2007) 761.
[89]    A. Malinauskas, J. Malinauskiene, A. Ramanavičius, Nanotechnology 16 (2005) R51.
[90]    H. Peng, L. Zhang, C. Soeller, J. Travas-Sejdic, Biomaterials 30 (2009) 2132.
[91]    L. Xia, Z. Wei, M. Wan, J. Colloid Interf. Sci. 341 (2010) 1.
[92]    T. Ahuja, D. Kumar, Sensor. Actuat. B-Chem. 136 (2009) 275.
[93]    S. Liu, D. Leech, H. Ju, Anal. Lett. 36 (2003) 1.
[94]    J.M. Pingarrón, P. Yañez-Sedeño, A. González-Cortés, Electrochim. Acta 53 (2008) 5848.
[95]    S. Guo, E. Wang, Anal. Chim. Acta 598 (2007) 181.
[96]    A.A. Ansari, P.R. Solanki, A. Kaushik, B. Malhotra, Recent Advances in Nanostructured Metal Oxides Based Electrochemical Biosensors for Clinical Diagnostics, Nova Science Publishers: Hauppauge, NY, USA, 2009.
[97]    G.A.  Rivas,  M.D.  Rubianes,  M.C.  Rodriguez,  N.F.
 
 
Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Talanta 74 (2007) 291.
[98]    K. Balasubramanian, M. Burghard, Anal. Bioanal. Chem. 385 (2006) 452.
[99]    A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. del Valle, S. Alegret, TrAC Trends in Anal. Chem. 24 (2005) 826.
[100]W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Nanotechnology 18 (2007) 412001.
[101]A. Ahammad, J.-J. Lee, M. Rahman, Sensors 9 (2009) 2289.
[102]Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, R.K. Narayan, W.S. Ball, M.J. Schulz, Nano Today 2 (2007) 30.
[103]P. He, Y. Xu, Y. Fang, Microchim. Acta 152 (2006) 175.
[104]L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, Anal. Chim. Acta 622 (2008) 11.
[105]C. Ding, Q. Zhang, S. Zhang, Biosensors and Bioelectronics 24 (2009) 2434.
[106]J.A. Hansen, R. Mukhopadhyay, J.Ø. Hansen, K.V. Gothelf, J. Am. Chem. Soc. 128 (2006) 3860.
[107]N. Chopra, V.G. Gavalas, L.G. Bachas, B.J. Hinds, L.G. Bachas, Anal. Lett. 40 (2007) 2067.
[108]J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert, J. Am. Chem. Soc. 125 (2003) 9006.
[109]A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, S. Cosnier, Nat. Commun. 2 (2011) 370.
[110]J.M. Guisan, Immobilization of Enzymes and Cells, Springer, 2006.
[111]T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, J. Am. Chem. Soc. 133 (2011) 5129.
[112]B.L. Treu, R. Arechederra, S.D. Minteer, J. Nanosci. Nanotechnol. 9 (2009) 2374.
[113]L. Hussein, S. Rubenwolf, Biosens. Bioelectron. 26 (2011) 4133.
[114]J. Lim, N. Cirigliano, J. Wang, B. Dunn, Phys. Chem. Chem. Phys. 9 (2007) 1809.
[115]C.F. Blanford, R.S. Heath, F.A. Armstrong, Chem. Commun. 17 (2007) 1710.
[116]M. Opallo, R. Bilewicz, Adv. Phys. Chem. 2011 (2011).
[117]F. Giroud,  S.D. Minteer,  Electrochem.  Commun.  34
 
 
(2013) 157.
[118]S. Sotiropoulou, N.A. Chaniotakis, Anal. Bioanal. Chem. 375 (2003) 103.
[119]J. Tkac, J.W. Whittaker, T. Ruzgas, Biosens. Bioelectron. 22 (2007) 1820.
[120]M. Mazaheri, A. Simchi, H. Aashuri, Microchim. Acta 185 (2018) 178.
[121]S.A. Neto, T. Almeida, D. Belnap, S. Minteer, A. De Andrade, Journal of Power Sources 273 (2015) 1065.
[122]B. Dalkıran, P.E. Erden, E. Kılıç, Anal. Bioanal. Chem. 408 (2016) 4329.
[123]V.I.P. Zanini, O.E.L. Pérez, M.L. Teijelo, P. Labbé, B.A.L. de Mishima, C.D. Borsarelli, Sensors and Actuators B: Chemical 247 (2017) 830.
[124]A. Chaubey, B. Malhotra, Biosens. Bioelectron. 17 (2002) 441.
[125]M.F. Simoyi, E. Falkenstein, K. Van Dyke, K.P. Blemings, H. Klandorf, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135 (2003) 325.
[126]G. Rea, F. Polticelli, A. Antonacci, V. Scognamiglio, P. Katiyar, S.A. Kulkarni, U. Johanningmeier, M.T. Giardi, Protein Sci. 18 (2009) 2139.
[127]G. Fusco, G. Göbel, R. Zanoni, M.P. Bracciale, G. Favero, F. Mazzei, F. Lisdat, Biosens. Bioelectron. 112 (2018) 8.
[128]O. Kujan, A.M. Glenny, R. Oliver, N. Thakker, P. Sloan, Cochrane Database of Systematic Reviews 3 (2006).
[129]S. Kumar, S. Kumar, S. Tiwari, S. Augustine, S. Srivastava, B.K. Yadav, B.D. Malhotra, Sensors and Actuators B: Chemical 235 (2016) 1.
[130]H.-F. Cui, W.-W. Wu, M.-M. Li, X. Song, Y. Lv, T.-T. Zhang, Biosens. Bioelectron. 99 (2018) 223.
[131]O. Syshchyk, V.A. Skryshevsky, O.O. Soldatkin, A.P. Soldatkin, Biosens. Bioelectron. 66 (2015) 89.
[132]G. Khan, W. Wernet, Anal. Chim. Acta 351 (1997) 151.
[133]L. Stoica, R. Ludwig, D. Haltrich, L. Gorton, Anal. Chem. 78 (2006) 393.
[134]F. Conzuelo, M. Gamella, S. Campuzano, M. Ruiz, A. Reviejo, J. Pingarron, J. Agr. Food Chem. 58 (2010) 7141.
[135]G.   Zeng,  Y.  Xing,  J.  Gao,  Z.   Wang,   X.   Zhang,
 
 
Langmuir 26 (2010) 15022.
[136]M. Boujtita, N. El Murr, Appl. Biochemi. Biotechnol. 89 (2000) 55.
[137]S. Tsujimura, A. Nishina, Y. Kamitaka, K. Kano, Anal. Chem. 81 (2009) 9383.
[138]M.S.-P. López, E. Redondo-Gómez, B. López-Ruiz, Talanta 175 (2017) 209.
[139]M.S.-P. López, F. Tamimi, E. López-Cabarcos, B. López-Ruiz, Biosens. Bioelectron. 24 (2009) 2574.
[140]M.S.P. López, B. López-Ruiz, Electroanalysis 23 (2011) 280.
[141]A.K. Basu, P. Chattopadhyay, U. Roychoudhuri, R. Chakraborty, Bioelectrochemistry 70 (2007) 375.
[142]A. Ahmadalinezhad, A. Chen, Biosens. Bioelectron. 26 (2011) 4508.
[143]M. Liu, Y. Wen, D. Li, R. Yue, J. Xu, H. He, Sensor. Actuat. B-Chem. 159 (2011) 277.
[144]X. Cui, C.M. Li, J. Zang, S. Yu, Biosens. Bioelectron. 22 (2007) 3288.
[145]J. Katrlı́k, A. Pizzariello, Anal. Chim. Acta 379 (1999) 193.
[146]A.W. Kwong, B. Gründig, J. Hu, R. Renneberg, Biotechnol. Lett. 22 (2000) 267.
[147]A. Curulli, S. Kelly, C. O'sullivan, G. Guilbault, G. Palleschi, Biosens. Bioelectron. 13 (1998) 1245.
[148]S. Kelly, P. O’Connell, C. O’Sullivan, G. Guilbault, Anal. Chim. Acta 412 (2000) 111.
[149]J. Katrlik, J. Švorc, M. Stred'anský, S. Miertuš, Biosens. Bioelectron. 13 (1998) 181.
[150]S.i. Imabayashi, Y.T. Kong, M. Watanabe, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 13 (2001) 408.
[151]M. Boujtita, J.P. Hart, R. Pittson, Biosens. Bioelectron. 15 (2000) 257.
[152]A. Romani, M. Minunni, N. Mulinacci, P. Pinelli, F. Vincieri, M. Del Carlo, M. Mascini, J. Agr. Food Chem. 48 (2000) 1197.
[153]H.J. Kim, H.P. Bennetto, M.A. Halablab, C. Choi, S. Yoon, Sensor. Actuat. B-Chem. 119 (2006) 143.
[154]L. Galvani, M. Foley,  (1791).
[155]J.B. Davis, H.F. Yarbrough, Biochemical Fuel Cell, Google Patents, 1967.
[156]A.    Yahiro,     S.    Lee,   D.   Kimble,   Biochimica et
 
 
Biophysica Acta (BBA)-Specialized Section on Biophysical Subjects 88 (1964) 375.
[157]D.P. Hickey, F. Giroud, D.W. Schmidtke, D.T. Glatzhofer, S.D. Minteer, Acs Catal. 3 (2013) 2729.
[158]M. Rasmussen, R.E. Ritzmann, I. Lee, A.J. Pollack, D. Scherson, J. Am. Chem. Soc. 134 (2012) 1458.
[159]N. Plumeré, O. Rüdiger, A.A. Oughli, R. Williams, J. Vivekananthan, S. Pöller, W. Schuhmann, W. Lubitz, Nat. Chem. 6 (2014) 822.
[160]S.A. Neto, E.L. Suda, S. Xu, M.T. Meredith, A.R. De Andrade, S.D. Minteer, Electrochim. Acta 87 (2013) 323.
[161]P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, PloS One 5 (2010) e10476.
[162]L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, J. Am. Chem. Soc. 134 (2012) 5040.
[163]A. Szczupak, J. Halámek, L. Halámková, V. Bocharova, L. Alfonta, E. Katz, Energy & Environmental Science 5 (2012) 8891.
[164]S. Cosnier, A. Le Goff, M. Holzinger, Electrochem. Commun. 38 (2014) 19.
[165]E. Ferapontova, C. Gomez, S. Shipovskov, J. Renew Sustain Ener 2 (2010).
[166]K. Stolarczyk, M. Kizling, D. Majdecka, K. Żelechowska, J.F. Biernat, J. Rogalski, R. Bilewicz, J. Power Sources 249 (2014) 263.
[167]K. Stolarczyk, M. Sepelowska, D. Lyp, K. Żelechowska, J.F. Biernat, J. Rogalski, K.D. Farmer, K.N. Roberts, R. Bilewicz, Bioelectrochemistry 87 (2012) 154.
[168]A. Bedekar, J. Feng, S. Krishnamoorthy, K. Lim, G. Palmore, S. Sundaram, Chem. Engin. Commun. 195 (2007) 256.
[169]M.J. González-Guerrero, J.P. Esquivel, D. Sánchez-Molas, P. Godignon, F.X. Muñoz, F.J. del Campo, F. Giroud, S.D. Minteer, N. Sabaté, Lab on a Chip 13 (2013) 2972.
[170]C.W.N. Villarrubia, C. Lau, G.P. Ciniciato, S.O. Garcia, S.S. Sibbett, D.N. Petsev, S. Babanova, G. Gupta, P. Atanassov, Electrochem. Commun. 45 (2014) 44.
[171]I.   Shitanda,   S.   Kato,   Y.   Hoshi,   M.   Itagaki,   S.
 
 
Tsujimura, Chem. Commun. 49 (2013) 11110.
[172]R.G. Compton, G.G. Wildgoose, N.V. Rees, I. Streeter, R. Baron, Chem. Phys. Lett. 459 (2008) 1.
[173]R. Feeney, S.P. Kounaves, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 12 (2000) 677.
[174]X.J. Huang, A.M. O'Mahony, R.G. Compton, Small 5 (2009) 776.
[175]F.J. del Campo, Electrochem. Commun. 45 (2014) 91.
[176]M.Y. Vagin, A.N. Sekretaryova, R.S. Reategui, I. Lundstrom, F. Winquist, M. Eriksson, Chem. Electro Chem. 1 (2014) 755.
[177]S.J. Rowley-Neale, G.C. Smith, C.E. Banks, ACS Applied Materials & Interfaces 9 (2017) 22539.
[178]Z. Lin, Y. Takahashi, Y. Kitagawa, T. Umemura, H. Shiku, T. Matsue, Anal. Chem. 80 (2008) 6830.
[179]I. Taurino, A. Magrez, F. Matteini, A. Cavallini, L.s. Forró, G. De Micheli, S. Carrara, Nano Lett. 14 (2014) 3180.
[180]P.U. Arumugam, H. Chen, S. Siddiqui, J.A. Weinrich, A. Jejelowo, J. Li, M. Meyyappan, Biosens. Bioelectron. 24 (2009) 2818.
[181]A.M. Ng, C.T. Lim, H.Y. Low, K.P. Loh, Biosens. Bioelectron. 65 (2015) 265.
[182]O. Ordeig, J. del Campo, F.X. Munoz, C.E. Banks, R.G. Compton, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 19 (2007) 1973.
[183]B. Ross, K. Cammann, Talanta 41 (1994) 977.
[184]V. Buk, M.E. Pemble, Electrochim. Acta 298 (2019) 97.
[185]J. Comer, Anal. Chem. 28 (1956) 1748.
[186]P. Von Lode, Clin. Biochem. 38 (2005) 591.
[187]A.K. Yetisen, M.S. Akram, C.R. Lowe, Lab on a Chip 13 (2013) 2210.
[188]J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Biosens. Bioelectron. 54 (2014) 585.
[189]E.J. Maxwell, A.D. Mazzeo, G.M. Whitesides, MRS Bulletin 38 (2013) 309.
[190]W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81 (2009) 5821.
[191]A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C.S. Henry, O. Chailapakul, Anal. Chem. 82 (2010) 1727.
 
 
[192]Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Lab on a Chip 10 (2010) 477.
[193]J. Noiphung, T. Songjaroen, W. Dungchai, C.S. Henry, O. Chailapakul, W. Laiwattanapaisal, Anal. Chim. Acta 788 (2013) 39.
[194]T. Songjaroen, W. Dungchai, O. Chailapakul, W. Laiwattanapaisal, Talanta 85 (2011) 2587.
[195]Y. Lu, W. Shi, J. Qin, B. Lin, Anal. Chem. 82 (2009) 329.
[196]W. Dungchai, O. Chailapakul, C.S. Henry, Analyst 136 (2011) 77.
[197]J. Wang, Analyst 130 (2005) 421.
[198]F. Arduini, S. Cinti, V. Scognamiglio, D. Moscone, Microchim. Acta 183 (2016) 2063.
[199]S. Cinti, F. Arduini, Biosens. Bioelectron. 89 (2017) 107.
[200]F. Arduini, S. Cinti, V. Scognamiglio, D. Moscone, G. Palleschi, Anal. Chim. Acta 959 (2017) 15.
[201]N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul, Biosens. Bioelectron. 52 (2014) 13.
[202]X. Sun, H. Wang, Y. Jian, F. Lan, L. Zhang, H. Liu, S. Ge, J. Yu, Biosens. Bioelectron. 105 (2018) 218.
[203]Y. Li, Y. Zhang, F. Li, J. Feng, M. Li, L. Chen, Y. Dong, Biosens. Bioelectron. 92 (2017) 33.
[204]D. Jampaiah, T.S. Reddy, A.E. Kandjani, P. Selvakannan, Y.M. Sabri, V.E. Coyle, R. Shukla, S.K. Bhargava, J. Mater. Chem. B 4 (2016) 3874.
[205]T. Mitsudome, M. Yamamoto, Z. Maeno, T. Mizugaki, K. Jitsukawa, K. Kaneda, J. Am. Chem. Soc. 137 (2015) 13452.
[206]A.J. Bandodkar, J. Wang, Trends in Biotechnol. 32 (2014) 363.
[207]A. Pantelopoulos, N.G. Bourbakis, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40 (2010) 1.
[208]J.R. Windmiller, J. Wang, Electroanalysis 25 (2013) 29.
[209]M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z. Bao, Adv. Mater. 25 (2013) 5997.
[210]T. Choudhary, G. Rajamanickam, D. Dendukuri, Lab on a Chip 15 (2015) 2064.
[211]A.J. Bandodkar, W. Jia, J. Wang, Electroanalysis 27 (2015) 562.
 
 
[212]J. Kim, G. Valdés-Ramírez, A.J. Bandodkar, W. Jia, A.G. Martinez, J. Ramírez, P. Mercier, J. Wang, Analyst 139 (2014) 1632.
[213]D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, Science 333 (2011) 838.
[214]W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang, Anal. chem. 85 (2013) 6553.
[215]R.K. Mishra, A. Martin, T. Nakagawa, A. Barfidokht, X. Lu, J.R. Sempionatto, K.M. Lyu, A. Karajic, M.M. Musameh,   I.L.  Kyratzis,  Biosens.  Bioelectron.  101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2018) 227.
[216]E. Katz, A.F. Bückmann, I. Willner, J. Am. Chem. Soc. 123 (2001) 10752.
[217]V. Krikstolaityte, Y. Oztekin, J. Kuliesius, A. Ramanaviciene, Z. Yazicigil, M. Ersoz, A. Okumus, A. Kausaite-Minkstimiene, Z. Kilic, A.O. Solak, Electroanalysis 25 (2013) 2677.
[218]T. Wang, R.D. Milton, S. Abdellaoui, D.P. Hickey, S.D. Minteer, Anal. Chem. 88 (2016) 3243.
[219]D. Majdecka, S. Draminska, D. Janusek, P. Krysinski, R. Bilewicz, Biosens. Bioelectron. 102 (2018) 383.