Bismuth Film Modified Glassy Carbon Electrode for Determination of Tannic Acid

Document Type : Research Paper

Authors

1 Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia

2 Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia.

Abstract

As a promising alternative for the mercury film electrode (MFE), the bismuth film electrode (BiFE) has been widely used in the field of electrochemical analysis. BiFE shows attractive properties and excellent performance such as environmentally friendliness, high sensitivity, easy preparation, well-defined signals and negligible effect to dissolved oxygen. According to recent experimental reports many electrochemical analysis have been studied with the use of BiFEs. Toxic heavy metal ions, pharmaceutical substances, pesticides and other biological molecules and products are determined with the BiFE. The voltammetric behavior of tannic acid (TA) at bismuth film modified glassy carbon electrode (Bi-GCE) has been studied by linear sweep voltammetry (LSV). Bismuth film was deposited on glassy carbon electrode (GCE) by single potential step chronoamperometric deposition at -450 mV for 120 s. TA shows a well-defined cathodic peak on the modified electrode at around -0.6 V vs. Ag/AgCl in Briton Robinson (BR) buffer solution of pH 3.6 at Bi-GCE. The effect of deposition time, deposition potential, bath concentration and pH of supporting electrolyte on the reduction current of TA were optimized. Under optimum conditions TA shows a linear range between 0.05 μM to 200 μM and the limit of detection (LoD) was found to be 0.035 μΜ. The developed method was used for determination of TA in tea samples.

Keywords


[1]           J. Wang, J. Lu, S.B. Hocevar, P.A.M. Farias, B. Ogorevc, Anal. Chem. 72 (2000) 3218.
[2]        A. Królicka, R. Pauliukait, I. S̆vancara, R. Metelka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas,  Electrochem. Commun. 4 (2002) 193.
[3]           E.A. Hutton, S.B. Hočevar, B. Ogorevc, Anal. Chim. Acta 537 (2005) 285.
[4]           D. Kong, Y. Chen, P. Wan, S. Liu, Z.U.H. Khan, B. Men,  Electrochim. Acta 125 (2014) 573.
[5]           S. Legeai, S. Bois, O. Vittori, J. Electroanal. Chem. 591 (2006) 93.
[6]           I. Švancara, C. Prior, S.B. Hočevar, J. Wang,  Electroanalysis 22 (2010) 1405.
[7]           K. Asadpour-Zeynali, P. Najafi-Marandi,  Electroanalysis 23 (2011) 2241.
[8]           V. Guzsvány, Z. Papp, J. Zbiljić, O. Vajdle, M. Rodić, Molecules 16 (2011) 4451.
[9]           H. Sopha, S.B. Hocevar, B. Pihlar, B. Ogorevc,  Electrochim. Acta 60 (2012) 274.
[10]        M.T. Castañeda, B. Pérez, M. Pumera, M. del Valle, A. Merkoçi, S. Alegret,  Analyst 130 (2005) 971.
[11]        N. Balasundram, K. Sundram, S. Samman, Food Chem. 99 (2006) 191
[12]        M.P. Gonthier, C. Remesy, A. Scalbert, V. Cheynier, J.M. Souquet, K. Poutanen, A.M. Aura, Biomed. Pharmacother. 60 (2006) 536.
[13]        C. Rice-Evans, N. Miller, G. Paganga, Trends Plant Sci. 2 (1997) 152.
[14]        S.M. Henning, Y. Niu, Y. Liu, N.H. Lee, Y. Hara, G.D. Thames, R.R. Minutti, C.L. Carpenter, H. Wang, D. Heber,  J. Nutr. Biochem. 16 (2005) 610.
[15]        S.B. Lotito, B. Frei, Free Radic. Biol. Med. 41 (2006) 1727.
[16]        N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat, J. Satayavivad,  Food Chem. Toxicol. 45 (2007) 328.
[17]        M.R. Revelette, J.A. Barak, J.A. Kennedy, J. Agric. Food Chem. 62 (2014) 6626.
[18]        A.M.Y. King, G. Young, J. Am. Diet. Assoc. 99 (1999) 213.
[19]        R.G. Andrade, L.T. Dalvi, J.M.C. Silva, G.K.B. Lopes, A. Alonso, M. Hermes-Lima, Arch. Biochem.
 
 
Biophys. 437 (2005) 1.
[20]        Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, J. Agric. Food Chem. 46 (1998) 4113.
[21]        R.G. Andrade, L.T. Dalvi, J.M.C. Silva, G.K.B. Lopes, A. Alonso, M. Hermes-Lima, Arch. Biochem. Biophys. 437 (2005) 1.
[22]        L.T. Wu, C.C. Chu, J.G. Chung, C.H. Chen, L.S. Hsu, J.K. Liu, S.C. Chen,  Mutat. Res. 556 (2004) 75.
[23]        L.R. Ferguson,  Mutat. Res. 475 (2001) 89-111.
[24]        S.-C. Chen, K.-T. Chung, Food Chem. Toxicol. 38 (2000) 1.
[25]        C. Nepka, E. Sivridis, O. Antonoglou, A. Kortsaris, A. Georgellis, I. Taitzoglou, P. Hytiroglou, C. Papadimitriou, I. Zintzaras, D. Kouretas,  Cancer Lett. 141 (1999) 57.
[26]        A. Scalbert, I.T. Johnson, M. Saltmarsh,  Am. J. Clin. Nutr. 81 (2005) 215S.
[27]        David W. Reische, Dorris A. Lillard, R.R. Eitenmiller, Antioxidants, Food Lipids. Chemistry, Nutrition, and Biotechnology,Antioxidants,  Taylor & Francis, New York, 2002.
[28]        A. Ren, W. Zhang, H.G. Thomas, A. Barish, S. Berry, J.S. Kiel, A.P. Naren,  Dig. Dis. Sci. 57 (2012) 99.
[29]        P. Orlowski, M. Krzyzowska, R. Zdanowski, A. Winnicka, J. Nowakowska, W. Stankiewicz, E. Tomaszewska, G. Celichowski, J. Grobelny,  Toxicol. in Vitro 27 (2013) 1798.
[30]        K. Erdèlyi, A. Kiss, E. Bakondi, P. Bai, C. Szabó, P. Gergely, F. Erdödi, L. Virág,  Mol. Pharmacol. 68 (2005) 895.
[31]        S. Athanasiadou, I. Kyriazakis, F. Jackson, R.L. Coop, Vet. Parasitol. 99 (2001) 205.
[32]        Y.-T. Hung, P.-C. Chen, R.L.C. Chen, T.-J. Cheng,  Food Chem. 118 (2010) 876.
[33]        E. Reich, A. Schibli, V. Widmer, R. Jorns, E. Wolfram, A. DeBatt,  J. Liq. Chromatogr. 29 (2006) 2141.
[34]        X.  Zhu,  B. Chen, M. Ma, X. Luo, F. Zhang, S. Yao,
 
 
 
 
 
 
Z. Wan, D. Yang, H. Hang,  J. Pharm. Biomed. Anal. 34 (2004) 695.
[35]        J.P. Aucamp, Y. Hara, Z. Apostolides, J. Chromatogr. A 876 (2000) 235.
[36]        Y. Lan, C. Wang, F. Yuan, T.H. Fereja, B. Lou, S. Han, J. Li, G. Xu,  Analyst 144 (2019) 4493.
[37]        Y.-G. Sun, H. Cui, Y.-H. Li, H.-Z. Zhao, X.-Q. Lin,  Anal. Lett. 33 (2000) 2281.
[38]        F.M.d.R. Lima, A.d.S. Freires, N.d.M. Pereira, G.G. Silva, C.Q. da Rocha, F.S. Damos, R.d.C.S. Luz,  Microchim. Acta 185 (2018) 521.
[39]        M.A. Raj, S.B. Revin, S.A. John, Bioelectrochem. 89 (2013) 1.
[40]        L. Xu, N. He, J. Du, Y. Deng, Z. Li, T. Wang,  Anal. Chim. Acta 634 (2009) 49.
[41]        A. Buso, L. Balbo, M. Giomo, G. Farnia, G. Sandonà,  Ind. Eng. Chem. Res. 39 (2000) 494.
[42]        N. Lezi, V. Vyskočil, A. Economou, J. Barek, Sens. Electroanalysis 7 (2012) 71.
[43]        T.T. Niguso, T.R. Soreta, E.T. Woldemariam, S. Afr. J. Chem. 71 (2018) 160.
[44]        Allen J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley and Sons, 2000.
[45]        C. Saby, B. Ortiz, G.Y. Champagne, D. Bélanger,  Langmuir 13 (1997) 6805.
[46]        P. Janeiro, A.M. Oliveira Brett, Anal. Chim. Acta 518 (2004) 109.
[47]        H. Kuramitz, Y. Nakata, M. Kawasaki, S. Tanaka,  Chemosphere 45 (2001) 37.
[48]        S. Lü, Russ. J. Electrochem. 40 (2004) 750.
[49]        H. Wan, Q. Zou, R. Yan, F. Zhao, B. Zeng,  Microchim. Acta 159 (2007) 109.
[50]        L. Xu, N. He, J. Du, Y. Deng, Electrochem. Commun. 10 (2008) 1657.
[51]        V. Dai Long, E. Bensu, Č. Libor, D. Yusuf, Int. J. Electrochem. Sci. 8 (2013) 9278.
[52]        V. Dai Long, E. Bensu, D. Yusuf, Č. Libor, Czech J. Food Sci. 33 (2015) 72.