Development of a New Fluoride Colorimetric Sensor Based on Anti-aggregation of Modified Silver Nanoparticles

Document Type: Research Paper

Authors

1 aDepartment of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran

2 Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, Iran

3 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

10.22036/abcr.2020.237950.1521

Abstract

In this study, aggregated silver nanoparticles were prepared using sulphanilic acid and catechol as a collection of stabilizing-reducing system. Preliminary studies showed that catechol (CAT) is readily oxidized by silver ions followed by sulphanilic acid (SA) nucleophilic attack. The resulting catechol derivative aggregates silver nanoparticles (Ag-NPs). The resulting product was characterized by different characterization techniques including UV–VIS spectrometry and transmission electron microscope (TEM). The SA-CAT induced aggregated Ag-NPs were used to develop a fast and ready to use colorimetric detection method for fluoride ion in water. In the presence of fluoride ions, the color of aggregated Ag-NPs solution change from brown to yellow with an absorbance decrease at 508 nm and an increase at 397 nm. Under the optimized conditions, the ratio of the absorbance intensity at 508 nm and 397 nm (A397/A508) was proportional to the fluoride ion concentration in the range of 1-40 µM with a detection limit of 0.2 µM. The proposed new method was successfully used for the determination of fluoride concentration in the local spring water samples.

Keywords


[1]       A.R. Timerbaev, Chem. Rev. 113 (2013) 778.
[2]       H. Deng, X.L. Yu, Ind. Eng. Chem. Res. 51 (2012) 2419.
[3]       Y. Michigami, Y. Kuroda, K. Ueda, Y. Yamamoto, Anal. Chim. Acta 274 (1993) 299.
[4]       E. O. Akumu, S. J. Kebenei, Kabarak J. Res. Innov. 8 (2019) 33.
 
 
[5]       H. Matsui, M. Morimoto, K. Horimoto, Y. Nishimura, Toxicol. in Vitro 21 (2007) 1113.
[6]       A. Dhillon,M. Nairb, D. Kumar, Anal. Methods 8 (2016) 5338.
[7]       S. Kage, K. Kudo, N. Nishida, H. Ikeda, N. Yoshioka, N. Ikeda, Forensic Toxicol. 26 (2008) 23.
[8]       A. Maikap, K. Mukherjee, N. Mandal, B. Mondal, A.K. Meikap, Electrochim. Acta 264 (2018) 150.
[9]       S. Wu, T. Han, J. Guo, Y. Cheng, Sensor. Actuat. B: Chem. 220 (2015) 1305.
[10]    J. Tao,  P. Zhao, Y. Li, W. Zhao, R. Yang, Anal. Chim. Acta 918 (2016) 97.
[11]    D. Udhayakumari, Spectrochim. Acta Part A 228 (2020) 117817.
[12]    Z.X. Zhou, W. Wei, Y.J. Zhang, S.Q. Liu, J. Mater. Chem. B 1 (2103) 2851.
[13]    J.K. Salem, M.A. Draz, Inorg. Chem. Commun. 116 (2020) 107900.
[14]    A. Contino, G. Maccarrone, M. Zimbone, M. Seggio, P. Musumeci, A. Giuffrida, L.  Calcagno, Colloids Surf. A Physicochem.  Eng. Asp. 529 (2017) 128. .
[15]    J.K. Salem, M.A. Draz, Int. J. Environ. Anal. Chem. (2020) https://doi.org/10.1080/03067319.2019.1702168
[16]    J.F. Sun, R. Liu, Z.M. Zhang, J.F. Liu, Anal. Chim. Acta 820 (2014) 139.
[17]    S. Watanabe, H. Seguchi, K. Yoshida, K. Kifune, Tetrahedron 46 (2005) 8827.
[18]    H. Wu, Y. Li, X. He, L. Chen, Y. Zhang,  Spectrochim. Acta A Mol. Biomol. Spectrosc. 214 (2019) 393.
[19]    Y. Li, P. Wu, H. Xu, Z. Zhang, X. Zhong, Talanta 84 (2011) 508.
[20]    Y. Fan, Z. Liu, L. Wang, J. Zhan, Nanoscale Res. Lett. 4 (2009) 1230.
[21]    A. Henglein, C. Brancewicz, Chem. Mater. 9 (1997) 2164.
[22]    D. Nematollahi, A. Afkhami, F. Mosaed, M. Rafiee, Res. Chem. Intermed. 30 (2004) 299.
[23]    S.M. Golabi, D. Nematollahi, J. Electroanal. Chem. 420 (1997) 127.
[24]    D. Nematollahi, H. Goodarzi, E. Tammariammari, J. Chem. Soc. Perkin Trans. II 4 (2002) 829.
[25]    V. Amendola, O.M. Bakr,  F.  Stellacci,  Plasmonics  5
 
 
(2010) 85.
[26]    H. Gebru, S. Cui, Z. Li, X. Wang, X. Pan, J. Liu, J.K. Guo, Catal. Lett. 147(2017) 2134.
[27]    P. Huang, J. Li, J. Song, N. Gao, F. Wu, Microchim. Acta 183 (2016) 1865.
[28]    L.S.    Clesceri,    A.E.    Greenberg,   A.D.   Eaton,  in
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Standard Methods for Examination of Water and Wastewater, American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF) Publication, 20th ed.,1998.