Hydrothermal Synthesis of Multifunctional Biochar-supported SALEN Nanocomposite for Adsorption of Cd(II) Ions: Function, Mechanism, Equilibrium and Kinetic Studies

Document Type: Research Paper

Authors

1 Department of Industrial Chemistry, Ebonyi State University, PMB 053 Abakaliki, Ebonyi State, Nigeria

2 Department of Chemistry/Biochemistry, Federal University Ndufu-Alike, Ebonyi State, Nigeria

10.22036/abcr.2020.234163.1512

Abstract

Facile hydrothermal synthetic technique was employed for the fabrication of SALEN grafted multifunctional nanocomposite biochar with the main aim of efficient and effective removal of cadmium (Cd). The elemental composition and structure of the composite and the cadmium loaded sorbent were characterized using EDX, FTIR and SEM. Variables affecting cadmium removal such as initial metal ion concentration, contact time and pH were investigated by batch experiment. Maximum adsorption capacity of 8220 mg/kg was obtained at optimal pH 10 with percentage removal efficiency of 99.30 % for 4480 ppm initial metal ion dosage. Data simulated into the adsorption and kinetic models fitted well the Freundlich isotherm implicating multilayer adsorption – chemisorption process and pseudo-second –order kinetics as the rate limiting step. Critical examination of the adsorption mechanism showed that inner-sphere complexation, ion exchange, co-precipitation and electrostatic attraction are the main driving force in the mechanistic interaction of the SALEN Schiff base N2O2 surface functionalized nanocomposite biochar with cadmium. The new nanocomposite is of low cost, benign, effective and efficient for the removal of cadmium in comparison with industrial sorbents and other functionalized biomaterials and highly recommended for decontamination of cadmium polluted sites.

Keywords


[1]       S. Honey, R. Neetu, B.M. Blessy, International J. Nanotechnol. Nanosci. 57 (2015) 1.
[2]       C. Hao, C. Anbin, Y. Shaohong, Mater. Sci. Engin. 301 (2018) 6.
[3]       L. Ma, J. Zhu, Y. Xi, R. Zhu, H. He, X. Liang, G.A. Ayoko, RSC Adv. 5 (2015) 577234.
[4]       W. Tang, N. Cai,  H. Xie, Y. Liu, Z. Wang, Y. Liao, T. Wei, C. Zhang, Z. Fu, D. Yin, Mater. Sci. Engin. 729 (2020) 012081. 
[5]       S. Wang, N. Wang, K. Yao, Y. Fan, W. Li, W. Han, X. Yin, D. Chen, Sci Rep. 9 (2019) 17868.
[6]       B. Wang, M. Ran, G. Fang, T. Wu, Y. Ni, Mater. (Basel). 13 (2020) 1037.
[7]       R. Deng, H. Chen, W. Li, J. Wang, H. Xu, Y. Liu, Z. Zhang, Y. Li, Y. Zhang, Bioresour Technol. 92 (2019) 121948.
[8]       L. Gholami, G. Rahimi, A. Khademi Jolgeh Nezhad, Int. J. Phytoremediation. 22 (2017) 468.
[9]       A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall, Food Chem. Toxicol. 48 (2010) 611.
[10]    Y.P. Musa, Z.A. Zurina, A.R. Suraya, M.Y. Faizah,  A.S.M. Noor, A.I. Mohammed, Nanomaterials 10 (2019) 315.
[11]    A.S. Khan, P. Dhevagi, P. Chitdeshwari, S. Avudainayagam, Madras Agric. J. 105 (2018) 24.
[12]    M. Scimeca, M. Feola, L. Romano, C. Rao, E. Gasbarra, E. Bonanno, Environ. Toxicol. 32 (2017) 1333.
[13]    M. Ghorbani, H. Eisazadeh, B: Eng. 45 (2015) 1.
[14]    S. Banerjee,   M.C. Chattopadyaya, Arab. J. Chem. 10 (2017) S1629.
[15]    B. Li, L. Yang, W. Chang-quan, Q. Zhang, Q. Liu,  Y. Li, R. Xiao, Chemosphere 175 (2007) 332.
[16]    W. Yu, F. Lian, G. Cui, Z. Liu, Chemosphere 193 (2017) 8.
[17]    Z. Jianjian, N. Yuzhong, R. Bing, C. Hou, Z. Shengxiao, J. Jilan, Z. Yao, Chem. Engine. J. 348 (2018) 574.
[18]    R. Chen, X. Zhao, J. Jiao, Y. Li, M. Wei, Int. J. Mol. Sci. 20 (2019) 1775. 
 
 
[19]    L. Zhang, J. Guo, X. Huang, W. Wang, P. Sun, Y. Lib, J. Han, RSC Adv. 9 (2019) 365.
[20]    D. Chen, X. Wang, X. Wang,  K. Feng, J. Su,  J. Dong, Science of The Total Environment. 714 (2020) 136550. 
[21]    F.S. Nworie, J. Turk. Chem. Soc. Section A: Chem. 5 (2018) 1029.
[22]    Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Chem. Engin. J. 231 (2013) 512. 
[23]    F.S. Nworie, F.I. Nwabue, W. Oti, E. Mbam, B.U. Nwali, J. Chil. Chem. Soc. 64 (2019) 4365
[24]    F.S. Nworie, F.I. Nwabue, Chemistry Journal                   of Moldova, General, Industrial and Ecological Chemistry. 10 (2017) 41
[25]    Y. Shen, H. Li, W. Zhu, S.H. Ho, W. Yuan, J. Chen,  B. Xie, Bioresource Technology 244 (2017) 1031.
[26]    R.P. Mokkapati, V.N. Ratnakaram, J.S. Mokkapati, Int., J. Environ. Sci. Technol. 10 (2017) 017.
[27]    A. Kezerle, N. Velic, K.D. Hasenay, Croat. Chem. Acta 91 (2018) 53.
[28]    K.K. Krishnani, X. Meng, C. Christodoulatos, V.M. Boddu, J. Hazard Mater. 153 (2008) 1222.
[29]    F. Nworie, F. Nwabue, I. Ikelle, A. Ogah, N. Elom,  N.O. Iloch, E.J. Itumoh, C.E. Oroke, J. Turk. Chem. Soc. A 5 (2018) 1257.
[30]    J. Kour, P.L. Homagai, M. Cagnin, A. AntonioMasi,  M.R. Pokhrel, K.N. Ghimire, Materials (2013) 649142.
[31]    H. Zhang, F. Xu, J. Xue, S. Chen, J. W.Juanjuan, Y. Yang, Scientific Reports 10 (2020).
[32]    W. Yu, E. Lian, G. Cui, Z. Liu, Chemosphere 193 (2017) 8.
[33]    S. Zhang, X. Yang, L. Liu, M. Ju, K. Zheng, Materials 11 (2018) 299.
[34]    J.H. Yuan, R.K. Xu, H. Zhang, Bio Resources. Technol. 102 (2011) 3488.
[35]    J. Matusik, T. Bajda, M. Manecki, J. Hazard. Mater. 152 (2008) 1332.
[36]    R. Xing,  J. Li , X. Yang, Z. Chen, R. Huang, Z. Chen, S. Zhou, Z. Chen, Front. Chem. 8 (2020) 140.
[37]    X. Han, C.F. Liang,  T.Q. Li,  K. Wang,  H.G. Huang,  X.E. Yang, J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol. 14 (2013) 640.
[38]    M.   Ruthiraan,  N.M.   Mubarak,   R.K.   Thines,  E.C.
 
 
Abdullah, J.N. Sahu,  N.S. Natesan Subramanian Jayakumar,  P. Ganesan, Korean J. Chem. Engin. 32 (2015) 446.
[39]    H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Bioresour Technol.  197 (2015) 356.
[40]    Z. Ding, X. Hu, Y. Wan, S. Wang, B.J. Gao, Ind. Eng. Chem. 33 (2016) 239.
[41]    M.W. Yap, N.M. Mubarak, J.N. Sahu, E.C. Abdullahi, J. Indust. Engin. Chem. 45 (2017) 287.
[42]    L. Bing, L.Yang, C. Wang, Q. Zhang, Q. Liu, Y. li, R. Xiao, Chemosphere 175 (2017) 332.
[43]    J. Liang, X. Li, Z. Yu, G. Zeng, Y. Luo, L. Jiang, H. Wu, ACS Sustain. Chem. Eng. 5 (2017) 5049.
[44]    D. Kołodynska, J. Bąk, M. Kozioł, L.V. Pylychuk, Nanoscale Res. Lett. 12 (2017) 433.
[45]    H. Peng, P. Gao, G. Chu, B. Pan, J. Peng, B. Xing, Environ. Pollut. 229 (2017) 846.
[46]    L. Xu, X. Zheng, H. Cui, Z. Zhu, J. Liang, J. Zhou, Bioinorg. Chem. Appl. (2017) 3695604.
[47]    N.E. El-Naggar, R.A.Hamouda, I.E. Mousa, M.S. Abdel-Hamid, N.H. Rabei, Scientific Reports 8 (2018) 12456.
[48]    Z. Fan, Q. Zhang, M. Li, D. Niu, W. Sang, F. Verpoort. Environ. Sci. Pollut. Res. Int. 25 (2018) 8330.
[49]    L. Simeng, G. Chen, Mater. Sci. & Eng. 2 (2018) 294.
[50]    G. Akgul, T.B. Maden, E. Diaz, E.M. Jimenez, Journal of Water Reuse and Desalination 9 (2019) 52.
[51]    L. Cui, C. Chen, C. Yen, J. Yan, J.A.Ippolito,  Q.Hussain, Bioresources 14 (2020) 842.
[52]    D. Moyakhe, F.B. Waanders, M. Le Roux, Q.P. Campbell, The Journal of the Southern African Institute of Mining and Metallurgy 119 (2019) 607.
[53]    H. Chen, W. Li, J. Wang,  H. Xu, Y. Liu,  Z. Zhang,  Y. Li, Y. Zhang, Bioresouce Technol.  292 (2019) 121948.
[54]    C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Environ. Sci. Pollut. Res. Int. 26 (2019) 8902.
[55]    G. Yin, L. Bi, X. Song, H. Luo, P. Ji, Q. Lin, Q. Liu, G. Tang, Environ. Sci. Pollut. Res. Int. 26 (2019) 7024.
[56]    Y. Tan, X. Yin, W.C. Caiyun, H. Sun, A. Ma, G. Zhang, N. Wang, Environmental Pollutants and Bioavailability 31 (2019) 189197.