Mutual Derivatization in the Determination of Dapsone and Thymol Using Cloud Point Extraction Followed by Spectrophotometric Detection

Document Type : Research Paper

Authors

1 Department of Biology, University of Baghdad, Baghdad, Iraq 10071

2 Department of Chemistry, College of Science Mustansiryia University, Baghdad, Iraq

3 3Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4

10.22036/abcr.2021.231109.1497

Abstract

A procedure, depending on the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction, i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg.mL-1 for thymol and 0.3-4 μg.mL-1 for Dapsone, with limits of detection 0.086 and 0.053 μg.mL-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed at 460 nm, within the concentration range of 0.1-2 μg.mL-1 for thymol and 0.1-1.8 μg.mL-1 for Dapsone, with limits of detection 0.0445 and 0.023 μg.mL-1, respectively. Correlation coefficients and molar absorptivities, were improved using cloud point extraction. The proposed method can be applied for their trace detection in different matrices.

Keywords


[1]        I.K. Wittmer, R. Scheidegger, H.P. Bader, H. Singer, C. Stamm, Sci. Total Environ. 409 (2011) 920.
[2]        M. Hadjigeorgiou, C. Papachrysostomou, Z. Theodorou, P. Kanari, S. Constantinou, Anal. Chim. Acta 637 (2009) 220.
[3]        B. Salehi, A.P. Mishra, I. Shukla, M. Sharifi-Rad, M.D.M. Contreras, A. Segura-Carretero, H.          Fathi,  N.N. Nasrabadi, F.  Kobarfard,  J.  Sharifi-Rad,
 
 
Phytother Res. 32 (2018) 1688.
[4]        J.J. De La Chapa, P.K. Singha, D.R. Lee, C.B. Gonzales, J. Oral. Pathol. Med. 47 (2018) 674.
[5]        H. Essousi, H. Barhoumi, J. Electroanal. Chem. 818 (2018) 131.
[6]        J. Peng, F. Tang, R. Zhou, X. Xie, S. Li, F. Xie, P. Yu, L. Mu, Acta Pharm. Sin. B 6 (2016) 540.
[7]        R. Heydari, M. Hosseini, S. Zarabi, Spectrochim. Acta, Part A 150 (2015) 786.
[8]        E. Kazemi, S. Dadfarnia, A.M. Haji Shabani, M.R. Fattahi, J. Khodaveisi, Spectrochim. Acta, Part A 187 (2017) 30.
[9]        Z. Pourghobadi, R. Heydari, R. Pourghobadi, M. Rashidipour, Monat. Chem.-Chem. Mo. 144 (2013) 773.
[10]    J.A. Padilla-Sánchez, P. Plaza-Bolaños, A.G. Frenich, Chapter 8-Applications and Strategies Based on Gas Chromatography-Low-Resolution Mass Spectrometry (GC-LRMS) for the Determination of Residues and Organic Contaminants in Environmental Samples. In: I. Ferrer, E.M. Thurman (Eds.), Comprehensive Analytical Chemistry, Vol. 61. Elsevier, 2013, pp. 181-202.
[11]    E. Bağda, E. Yabaş, N. Karakuş, J. Radioanal. Nucl. Chem. 299 (2014) 1813.
[12]    H. Filik, D. Kilcan, J. Anal. Chem. 69 (2014) 255.
[13]    F.R. Caetano, A. Gevaerd, E.G. Castro, M.F. Bergamini, A.J.G. Zarbin, L.H. Marcolino-Junior, Electrochimica Acta 66 (2012) 265.
[14]    A. Samadi-Maybodi, V. Rezaei, Microchimica Acta 178 (2012) 399.
[15]    G. Blanchet-Chouinard, D. Larivière, Talanta 179 (2018) 300.
[16]    S. Ulusoy, M. Akçay, F Anal. Meth. 11 (2018) 260.
[17]    M.A. Abdel-Fadeel, H.M. Al-Saidi, A.A. El-Bindary, A.Z. El-Sonbati, S.S. Alharthi, J. Mol. Liq. 249 (2018) 963.
 
 
 
 
 
 
 
 
 
[18]    J. Zhou, J.B. Sun, Q.F. Wang, J. Chromatogr. B 1072 (2018) 136.
[19]    B. Narayana, K. Sunil, Eurasian J. Anal. Chem. 4 (2009) 204.
[20]    Y. Huang, W. Shi, C. Zhang, L. Li, H. Wen. Atmos. Pollut. Res. 7 (2016) 333.
[21]    Y. Lu, D. Lu, R. You, J. Liu, L. Huang, J. Su, S. Feng, Nanomaterials (Basel) 8 (2018) 400.
[22]    J.H. Ridd, J. Soc. Dyers Colour. 75 (1959) 285.
[23]    S. Al-Majidi, M. Al-Khuzaie, Iraqi J. Sci. 60 (2019) 2341.
[24]    M.A. Karimi Zarchi, M. Karimi, J. Appl. Polym. Sci. 123 (2012) 2762.
[25]    S. Ghosh, S. Moulik, IJC-A 38 (1999) 10.
[26]    M. Guncheva, E. Stippler, AAPS Pharm. Sci. Tech. 18 (2017) 1402.
[27]    F. Bureš, Top. Curr. Chem. 377 (2019) 14.
[28]    X. Liu, A. Li, B. Zhou, C. Qiu, H. Ren, Chem. Cent. J. 3 (2009) 7.
[29]    D. Snigur, A. Chebotarev, V. Dubovyiy, D. Barbalat, K. Bevziuk, Microchem. J. (2018).
[30]    N. Koukabi, S. Otokesh, E. Kolvari, A. Amoozadeh, Dyes Pigm. 124 (2016) 12.
[31]    Z. Alshebly, Int. J. Eng. Technol. 14 (2014) 104.
[32]    S.A. Dhahir, J. Kufa Chem. Sci. 2 (2011) 99.
[33]    U. Saeed, Iraqi J. Sci. 55 (2009) 17.
[34]    M. Al-Abachi, H. Hadi, G. Fadhil, Al-Nahrain J. Sci. 18 (2018) 18.
[35]    G. Fadhil, Iraqi J. Sci. 55 (2014) 27.
[36]    L.T. Daood, Raf. Jour. Sci. 19 (2008) 24.
[37]    L.A. Sarsam, Raf. J. Sci. 24 (2013) 128.
[38]    S.M. Abdel, Alhamid Indian J. Res. Pharm. Biotechnol. 3 (2015) 2320.
[39]    H.Y. Wang, L.X. Xu, Y. Xiao, J. Han, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60 (2004) 2933.
[40]    S. Ahmed, I. Mohsin, A. Mohammed, S. Dikran, IHJPAS 26 (2013) 281.