Removal of Pharmaceutical Compounds from Hospital Wastewaters Using Nanomaterials: A Review

Document Type: Review

Authors

1 Chemical Injuries Research Center, Baqiyatallah Medical Sciences University

2 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.

3 3Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Abstract

Over the past few years, residual pharmaceuticals (antibiotics, anticonvulsants, antipyretics drugs, hormones) have begun to be considered as emerging environmental pollutants due to their continuous input and persistence to aquatic ecosystem even at low concentrations. Therefore, the development of efficient, cost-effective, and stable methods and materials for the wastewaters treatment have gained more recognition in recent years. In the path of meeting these developments, nanomaterials have attracted much attention as economical, convenient and ecofriendly tools for removing of pharmaceuticals from the hospital wastewaters because of their unique properties. The present review deals with recent advances in removal and/or destruction of residual pharmaceutical in wastewater samples using nanomaterials including metal nanoparticles, carbon nanotubes and nanofilters. In spite of using a variety of nanomaterials to remove the residual of pharmaceuticals, there is still a dearth of successful applicability of them in industrial processes. Therefore, some defects of nanomaterials to be used for the removal of pharmaceutical contaminate in environmental samples and their impacts on human health and environment is briefly discussed.

Keywords


[1] P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic, D. Barcelo, Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, Sci. Total Environ., 430 (2012) 109-118.

 [2] B. Pauwels, W. Verstraete, The treatment of hospital wastewater, J.Water and Health., 4 (2006) 405-416.

 [3] V. Chitnisa, S. Chitnisa, K. Vaidyaa, S. Ravikanta, S. Patilb, D.S. Chitnisa, Bacterial population changes in hospital effluent treatment plant in central India, Water Res., 38 (2004) 441-447.

 

[4] P. Verlicchi, M. Al Aukidy, E. Zambello, What have we learned from worldwide experiences on the management and treatment of hospital effluent? An overview and a discussion on perspectives, Sci. Total Environ. 514 (2015) 467-491.

 

[5] E. Emmanuel, Y. Perrodin, J. Blanchard, P. Vermande, Chemical, Biological and Ecotoxicological of Hospital Wastewater, J. Sci. Tech., 2 (2001) 31-38.

 

[6] D.G.J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazardous Mater., 148 (2007) 751-755.

 

[7] P. Verlicchi, A. Galletti, M. Petrovic, D. Barcelo, Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options, J. Hydrology., 389 (2010) 416-428.

 

[8] C. Ort, M.G. Lawrence, J. Reungoat, G. Eaglesham, S. Carter, J. Keller, Determining the fraction of pharmaceutical residues in wastewater originating from a hospital, Water Res., 44 (2010) 605-615.

 

[9] M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. international. 35 (2009) 402-417.

 

[10] A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 387 (2007) 1225-1234.

 

[11] L. Akmehmet Balcıoglu, M. Otker, Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere. 50 (2003) 85–95

 

[12] D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research, Anal. Bioanal. Chem. 399 (2011) 251-275.

 

[13] J.L. Tambosi, L.Y. Yamanaka, H.J. José, R.D.F.P. M. Moreira, H.F. Schröder,. Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP), Química Nova. 33 (2010) 411-420.

 

[14] O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine‐disrupting compounds from wastewater by photocatalysis, J. Chem. Technol. Biotechnol., 82 (2007) 121-134.

 

[15] K. Ikehata, N. Jodeiri Naghashkar, M. Gamal El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci. Eng. 28 (2006) 353-414.

 

[16] C. Zwiener, F.H. Frimmel, Oxidative treatment of pharmaceuticals in water, Water Res., 34 (2000) 1881–1885.

[17] C. Zwiener, F.H. Frimmel, Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac, Sci. Total Environ., 309 (2003) 201-211.

 [18] T.A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.J. Brauch, B.H. Gulde, G. Preuss, U. Wilme, and N.Z. Seibert, Removal of Pharmaceuticals During Drinking Water Treatment, Environ. Sci. Technol., 36 (2002) 3855–3863.

[19] T.A. Ternes, J. Stu¨ ber, N. Herrmann, D. McDowell, A. Ried, M. Kampmann, B. Teiser, Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater?, Water Res., 37 (2003) 1976–1982.

[20] C. Hartig, M. Ernst, M. Jekel, Membrane Filtration of Two Sulphonamides in Tertiary Effluents and Subsequent Adsorption on Activated Carbon, Water Res., 35 (2001) 3998-4003.

 [21] T. Heberer, Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data, Toxicol. Lett., 131 (2002) 5–17.

[22] T. Heberer, D. Feldmann, K. Reddersen, H.J. Altmann, and T. Zimmermann, Production of Drinking Water from Highly Contaminated Surface Waters: Removal of Organic, Inorganic and Microbial Contaminants Applying Mobile Membrane Filtration Units, Acta Hydrochim. Hydrobiol., 30 (2002) 24–33.

 [23] L.D. Nghiem, A.I. Schafer, M. Elimelech, Pharmaceutical Retention Mechanisms by Nanofiltration Membranes, Environ. Sci. Technol., 39 (2005) 7698–7705.

 [24] L.D. Nghiem, A. Manis, K. Soldenhoff, A.I. Schafer, Estrogenic Hormone Removal from Wastewater Using NF/RO Membranes, J. Membr. Sci., 242 (2004) 37–45.

 [25] T.A. Larsen, J. Lienert, A. Joss, H. Siegrist, How to Avoid Pharmaceuticals in the Aquatic Environment, J. Biotechnol., 113 (2004) 295–304.

 [26] S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry, Environ. Eng. Sci., 20 (2003) 449–469.

 [27]D.K. Tiwari, J. Behari, P. Sen, Application of Nanoparticles in Waste Water Treatment, World Applied Sci. J., 3(2008) 417-433.

 [28] M. T. Amin, A. A. Alazba, U. Manzoor, A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, 2014 (2014) 1-24.

 [29] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy metal ions in wastewater samples using nano alumina modified with 2,4-dinitrophenylhydrazine, J. Hazard. Mater. 181 (2010) 836–844.

 [30] V.L, Colvin, The potential environmental impact of engineered nanomaterials, Nature Biotech., 10 (2003) 1166-1170.

 [31] A. Nadim, M. Al-Ghobashy, M. Nebsen and M. Shehata, Optimization of photocatalytic degradation of meloxicam using titanium dioxide nanoparticles: application to pharmaceutical wastewater analysis, treatment, and cleaning validation Environ Sci Pollut Res, 2015, 22, 15516-15525.

 [32] P.K.T.R. Singh, S. Vats, D. Kumar, S. Tyagi, Nanomaterials Use in Wastewater Treatment, international conference on nanotechnology and chemical engineering, December 21-22, 2012, Bangkuk (Thailand)

 [33] N.C. Mueller, B. Nowack, Nanotechnology Developments for the Environment Sector, Report of the Observatory NANO. 2009.

 [34] A. Jodat, A. Jodat, Photocatalytic degradation of chloramphenicol and tartrazine using Ag/TiO2 nanoparticles, Desalin. Water Treat. 52 (2014) 2668-2677.

 [35] E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions, Water Res. 44 (2010) 1737–1746.

 [36] E.S. Elmolla, M. Chaudhuri, Comparison of different advanced oxidation processes for treatment of antibiotic, Desalination. 256 (2010) 43–47.

 [37] D.P. Mohapatra, S.K. Brar, R.D. Tyagi, P. Picard, R.Y. Surampalli, Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine, Sci. Total Environ. 470 (2014) 58-75.

 [38] H.R. Pouretedal, M.A. Hasanali, Photocatalytic degradation of some β-lactam antibiotics in aqueous suspension of ZnS nanoparticles, Desalin. Water Treat. 51 (2013) 2617-2623.

 [39] S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J. Environ. Manag. 92 (2011) 311–330.

 [40] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. C 9 (2008) 1–12.

 [41] M. Petala, V. Tsiridis, P. Samaras, A. Zouboulis, G.P. Sakellaropoulos, Wastewater reclamation by advanced treatment of secondary effluents, Desalination 195 (2006) 109–118.

 [42] C. Chen, X. Zhang, W. He, W. Lu, H. Han, Comparison of seven kinds of drinking water treatment processes to enhance organic material removal: A pilot test, Sci. Total Environ. 382 (2007) 93–102.

 [43] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.

 [44] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res. 38 (2004) 3001–3008.

 [45] M. Kotobuki, R. Leppelt, D.A.Hansgen, D.Widmann, R.J. Behm, Reactive oxygen on a Au/TiO2 supported catalyst, J. Catal. 264 (2009) 67–76.

 [46] M.A. Behnajady, N. Modirshahla, M. Shokri, B. Rad, Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods, Global Nest J. 10 (2008) 1–7.

 [47] V. Augugliaro, E. Garcia-Lopez, V. Loddo, S. Malato-Rodriguez, I. Maldonado, G. Marci, Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation, Sol. Energy. 79 (2005) 402–408.

 [48] R. Molinari, F. Pirillo, V. Loddo, L. Palmisano, Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor, Catal. Today. 118 (2006) 205–213.

 [49] H.M. Coleman, B.R. Eggins, J.A. Byrne, F.L. Palmer, E. King, Photocatalytic degradation of 17β-oestradiol on immobilized TiO2, Appl. Catal. B. Environ. 24 (2000) 1–5.

 [50] H.M. Coleman, E.J. Routledge, J.P. Sumpter, B.R. Eggins, J.A. Byrne, Rapid loss of estrogenity of steroid estrogens by UVA photolysis and photocatalysis over an immobilized titanium dioxide catalyst, Water Res. 38 (2004) 3233–3240.

 [51] H.M. Coleman, M.I. Abdullah, B.R. Eggins, F.L. Palmer, Photocatalytic degradation of 17β- oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectroscopy, Appl. Catal. B. Environ. 55 (2005) 23–30.

 [52] H.M. Coleman, K. Chiang, R. Amal, Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water, Chem. Eng. J. 113 (2005b) 65–72.

 [53] T. Nakashima, Y. Ohko, Y. Kubota, A. Fujishima, Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets, J. Photochem. Photobiol. A. 160 (2003) 115–20

 [54] R. Mohammadi, B. Massoumi, H. Eskandarloo, Preparation and characterization of Sn/Zn/TiO2 photocatalyst for enhanced amoxicillin trihydrate degradation, Desalin. Water Treat. 53 (2015) 1995-2004.

 [55] X. Li, R. Xiong, G. Wei, Preparation and photocatalytic activity of nanoglued Sn-doped TiO2, J. Hazard. Mater. 164 (2009) 587–591.

 [56] R. Parra, L.A. Ramajo, M.S. Goes, G.A. Varela, M.S. Castro, From tin oxalate to (Fe Co., Nb)-Doped SnO2: Sintering behavior, microstructural and electrical features, Mater. Res. Bull. 43 (2008) 3202–3211.

 [57] Z. Zhang, C. Wang, R. Zakaria, J.-Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B. 102 (1998) 10871–10878.

 [58] I.H. Tseng, J.C.S. Wu, H.Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal. 221 (2004) 432–440.

 [59] M. Shokri, A. Jodat, N. Modirshahla, M.A. Behnajady, Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles, Environ. Technol. 34 (2013) 1161–1166.

 [60] R. Nainani, P. Thakur, M. Chaskar, Synthesis of silver doped TiO2 nanoparticles for the improved photocatalytic degradation of methyl orange, J. Mater. Sci. Eng. B 2 (2012) 52–58.

 [61] A.A. Abdel-Wahab, O.S. Mohamed, S.A. Ahmed, M.F. Mostafa, Ag-doped TiO2 enhanced photocatalytic oxidation of 1,2-cyclohexanediol, J. Phys. Org. Chem. 25 (2012) 1418–1421.

 [62] N. Nino-Martinez, G.A. Martinez-Castanon, A. Aragon-Pina, F. Martinez-utierrez, J.R. Martinez-Mendoza, F. Ruiz, Characterization of silver nanoparticles synthesized on titanium dioxide fine particles, Nanotechnol. 19 (2008) 065711/1–065711/8.

 [63] Y. Li, M. Zhang, M. Guo, X. Wang, Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Metals, 28 (2009) 423-427.

 [64] Z.H. Li, Z.Q. Liu, Q.Z. Yan, Y.C. Wang, C.C. Ge, Preparation and performance of titanate nanotube by hydrothermal treatment. Rare Met., 27 (2008) 187-191.

 [65] S.W. Lee, J. Drwiega, C.Y. Wu, D. Mazyck, W.A. Sigmund, Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chem. Mater., 16 (2004) 1160-1164.

 [66] F. Chen, Y.D. Xie, J.C. Zhao, G.X. Lu, Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere, 44 (2001) 1159-1168.

 [67] S.W. Lee, J. Drwiega, D. Mazyck, C.Y. Wu, W.M. Sigmund, Synthesis and characterization of hard magnetic composite photocatalyst⎯Barium ferrite/silica/titania. Mater.Chem. Phys., 96 (2006) 483-488.

 [68] D. Beydoun, R. Amal, G.K.C. Low, S. McEvoy, Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B., 104 (2000) 4387-4396.

 [69] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination 263 (2010) 240-248.

 [70] H. Bagheri, A. Afkhami, M. Saber-Tehrani, H. Khoshsafar, Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry, Talanta 97 (2012) 87–95.

 [71] H. Bagheri, A.A. Asgharinezhad, H. Ebrahimzadeh, Determination of trace amounts of Cd(II), Cu(II), and Ni(II) in food samples using a novel functionalized magnetic nanosorbent, Food Anal. Methods, DOI 10.1007/s12161-015-0264-x.

 [72] Sh. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review, Microchem. J. 116 (2014) 62-76.

 [73] J. Yan, M. Lei, L. Zhu, M. N. Anjum, J. Zou and H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate J. Hazard. Mater. 186 (2011) 1398-1404.

 [74] T. Mackuľak, L. Birošová, I. Bodík, R. Grabic, A. Takáčová, M. Smolinská, A. Hanusová, J. Híveš and M. Gál, ent iron and iron (VI): Effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters, Sci. Total Environ., 2016 (539) 420-426.

 [75] P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: A review, Sci. Total Environ., 424 (2012) 1-10.

 [76] H. Kim, Y.S. Hwang, V.K. Sharma, Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes, Chemical Eng. J., 255 (2014) 23-27.

 [77]  H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon, J.C. Lee, High performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interfaces 6 (2014) 2819–2829.

 [78] R.K. Singh, K.D. Patel, J.J. Kim, T.H. Kim, J.H. Kim, U.S. Shin, E.J. Lee, J.C. Knowles, H.W. Kim, Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system, ACS Appl. Mater. Interfaces 6 (2014) 2201–2208.

[79] R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environ. Org. Chem., 2nd ed., Wiley-Interscience, New York, 2003.

 [80] R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (2001) 2058–2059.

 [81] I.V. Lara, I. Zanella, S.B. Fagan, Functionalization of carbon nanotube by carboxyl group under radial deformation, Chem. Phys. 428 (2014) 117–120.

 [82] W. Chen, T.M. Young, Influence of nitrogen source on NDMA formation during chlorination of diuron, Water Res. 43 (2009) 3047–3056.

 [83] J. Chen, W. Chen, D. Zhu, Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry, Environ. Sci. Technol. 42 (2008) 7225–7230.

 [84] S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catalysis Today. 186 (2012) 29-34.

 [85] H.B. Peng, B. Pan, M. Wu, Y. Liu, D. Zhang, B.S. Xing, Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure controlled process, J. Hazard. Mater. 233 (2012) 89–96.

 [86]L. Camilli, C. Pisani, E. Gautron, M. Scarselli, P. Castrucci, F. D’Orazio, M. De Crescenzi, A three-dimensional carbon nanotube network for water treatment, Nanotechnol. 25 (2014) 065701.

 [87] E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites sci. technol., 61 (2001) 1899-1912.

 [88] V.K.K. Upadhyayula, J.P. Ruparelia, A. Agrawal, Use of carbon nanotubes in water treatment Nanoscale Multifunctional Materials: Science and Applications ed S M Mukhopadhyay (Hoboken, NJ: Wiley) (2011) 321–368.

 [89] V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith,  Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Tot. Environ. 408 (2009) 1-13.

 [90] V.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. total environ. 408 (2009) 1-13.

 [91] Z.C. Di, J. Ding, X.J. Peng, Y.H. Li, Z.K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria particles, Chemosphere. 62 (2006) 861–865.

 [92] Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res. 39 (2005) 605–609.

 [93] R.G. Purnachadra, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solutions by carbon nanotubes: a review, Sep. Purif. Technol. 58 (2007) 224-231.

 [94] X. Peng, Z. Luan, J. Ding, Z. Di, Y.H. Li, B. Tian, Ceria nanoparticles supported nanotubes for removal of arsenate in water, Mater. Lett. 59 (2005) 399-403.

 [95] S. Gotovac, C.M. Yang, Y. Hattori, K. Takahashi, H. Kanoh, K. Kaneko, Adsorption of poly aromatic hydrocarbons on single walled carbon nanotubes of different functionalities and diameters, J. Colloid Interface Sci. 314 (2007) 18–24.

 [96] T.G. Hedderman, S.M. Keogh, G. Chambers, H.J. Byrne, In depth study into the interaction of single walled carbon nanotubes with anthracene and p-terphenyl, J. Phys. Chem. B. 110 (2006) 3895–3901.

 [97] K. Yang, L. Zhu, B. Xing, Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environ. Sci. Technol. 40 (2006) 1855–1861.

 [98] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (2008) 30–38.

 [99] T. Akasaka, F. Watari, Capture of bacteria by flexible carbon nanotubes, Acta. Biomater. 5 (2009) 607–612.

 [100] S. Deng, V.K.K. Upadhyayula, G.B. Smith, M.C. Mitchell, Adsorption equilibrium and kinetics of microorganisms on single walled carbon nanotubes, IEEE Sens. 8 (2008) 954–962.

 [101] A. Srivatsava, O.N. Srivatsava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filters, Nat. Lett. 3 (2004) 610–614.

 [102] V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, V.S. Nair, S. Ghoshroy, Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single walled carbon nanotube aggregates, Wat. Sci. Technol. 58 (2008a) 179–184.

 [103] V.K.K. Upadhyayula, S. Ghoshroy, V.S. Nair, G.B. Smith, M.C. Mitchell, S. Deng, Single walled carbon nanotubes as fluorescence biosensors for pathogen recognition in water systems, J. Nanotechnol. (2008) DOI:10.1155/2008/156358.

 [104] V.K.K. Upadhyayula, S. Deng, G.B. Smith, M.C. Mitchell, Adsorption of Bacillus subtilis on single walled carbon nanotube aggregates, activated carbon and nanoceramTM, Water Res. 43 (2009) 1–9.

 [105] A.S. Brady-Estevez, S. Kang, M. Elimelech, A single walled carbon nanotube filter for removal of viral and bacterial pathogens, Small. 4 (2008) 481–484.

 [106] S.T. Mostafavi, M.R. Mehrnia, A.M. Rashidi, Preparation of nanofilter from carbon nanotubes for application in virus removal from water, Desalination. 238 (2009) 271–280.

 [107] H. Hyung, J.H. Kim, Natural organic matter (NOM) adsorption to multi walled carbon nanotubes: effect on NOM characteristics and water quality parameters, Environ. Sci. Technol. 42 (2008) 4416–4421.

 [108] C. Lu, F. Su, Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol. 58 (2007) 113–121.

 [109] N.B. Saleh, L.D. Pfefferle, M. Elimelech, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications, Environ. Sci. Technol. 42 (2008) 7963–7969.

 [110] F. Su, C. Lu, Adsorption kinetics, thermodynamics, and desorption of natural dissolved organic matter by multi walled carbon nanotubes, J. Environ. Sci. Health Part A. 42 (2007) 1543–1552

 [111] E.C. Albuquerque Junior, M.O.A. Mendez, A.D.R. Coutinho, T.T. Franco, Removal of cyanobacterial toxins from drinking water by adsorption on activated carbon fibers, Material Research. 11 (2008) 370–380.

 [112] H. Yan, A. Gong, H. He, J. Zhou, Y. Wei, L. Lv, Adsorption of microcystins by carbon nanotubes, Chemosphere. 62 (2006) 142–148.

 [113] H. Yan, G. Pan, Z. Hua, X. Li, H. Chen, Effective removal of microcystins using carbon nanotubes embedded with bacteria, Chin. Sci. Bull. 49 (2004) 1694–1698.

 [114] F. Yu, S. Sun, S. Han, J. Zheng and J. Ma, Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions, Chem. Eng. J. 2016, 285, 588-595.

 [115] Q. Zaib, B. Mansoor and F. Ahmad, Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water, Environ. Sci.: Processes & Impacts, 2013, 15, 1582-1589.

 [116] B. Czech and W. Buda, Photocatalytic treatment of pharmaceutical waste water using new multiwall carbon nanotubes/TiO2/SiO2 nanocomposites, Environ. Res. 2015, 137, 176-184.

 [117] D. Zhang, B. Pan, H. Zhang, P. Ning, B. Xing, Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon   nanotubes, Environ. Sci. technol., 44(2010) 3806-3811.

 [118] Q. Cong, X. Yuan, J. Qu, A review on the removal of antibiotics by carbon nanotubes, Wat. Sci. Technol. 68 (2013) 1679-1687.

 [119] X.C. Zhao, R.T. Liu, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels, Environment International 40 (2012) 244-256.

 [120] H.H. Cho, B.A. Smith, J.D. Wnuk, D.H. Fairbrother, W.P. Ball, Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes, Environ. Sci. Technol. 42 (2008) 2899–2905.

 [121] Z.Y. Wang, X.D. Yu, B. Pan, B.S. Xing,  Norfloxacin Sorption and its thermodynamics on surface-modified carbon nanotubes, Environ. Sci. Technol. 44 (2010b) 978–984.

 [122] I.N. Dias, B.S. Souza, J.H.O.S. Pereira, F.C. Moreira, M. Dezotti, R.A.R. Boaventura, V.J.P. Vilar, Enhancement of the photo-Fenton reaction at near neutral pH through the use of ferrioxalate complexes: A case study on trimethoprim and sulfamethoxazole antibiotics removal from aqueous solutions, Chem. Eng. J., 247 (2014) 302-313.

 [123] Y. Wang, L. Shu, V. Jegatheesan, B. Gao, Removal and adsorption of diuron through nanofiltration membrane: the effects of ionic environment and operating pressures, Sep. Purif. Technol. 74 (2010a) 236–241.

 [124] H. Sun, F. Qiao, G. Liu, S. Liang, Simultaneous isolation of six fluoroquinolones in serum samples by selective molecularly imprinted matrix solid-phase dispersion, Analytica chimica acta. 625 (2008), 154-159.

 [125]  M. Sun, S.X. Gan, D.F. Yin, H.Y. Liu, W.D. Yang, Application of nanofiltration membrane in the purification process of tylosin, Chin. J. Antibiot. 25 (2000) 172-174.

 [126] L.H. Wu, Nanofiltration membrane-a new separating material and its application in pharmaceutical industry, Membr. Sci. Tech. 17 (1997) 11-14.

 [127] W. Zhang, G.H. He, P. Gao, G.H. Chen, Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics, Sep. Purif. Technol. 30 (2003) 27-35.

 [128] M. Perry, C. Linder, Intermediate reverse osmosis ultrafiltration (RO-UF) membranes for concentration and desalting of low molecular weight organic solutes, Desalination. 71 (1989) 233-245.

 [129] D. Watson, C.D. Hornburg, Low energy membrane nanofiltration for removal of color organic and hardness from water supplies, Desalination.  72 (1989) 11-22.

 [130] S. Mazloomi, R. Nabizadh, S. Nasseri, K. Naddafi, S. Nazmara, A.H. Mahvi, Efficiency of domestic reverse osmosis in removal of trihalomethanes from drinking water, Iran. J. Environ. Health. Sci. Eng. 6 (2010) 301-306.

 [131] E.M. Vrijenhoek, J.J. Waypa, Arsenic removal from drinking water by a loose nanofiltration membrane, Desalination. 130 (2000) 265-277.

 [132] A. Hafiane, D. Lemordant, M. Dhahbi, Removal of hexavalent chromium by nanofiltration, Desalination, 130 (2000) 305-312.

 [133] C. Christy, S. Vermant, The state-of-the-art of filtration in recovery processes for biopharmaceutical production, Desalination. 147 (2002) 1-4.

 [134] A. Salahi, T. Mohammadi, F. Rekabdar,  H. Mahdavi, Reverse osmosis of refinery oily wastewater effluents, Iran. J. Environ. Health. Sci. Eng. 7 (2010) 413-422.

 [135] A. Zhu, W. Zhu, Z. Wub, Y. Jing, Recovery of clindamycin from fermentation wastewater with nanofiltration membranes, Water Res, 37 (2003) 3718–3732.

 [136] L.P. Raman, M. Cheryan, N. Rajagopalan, Consider nanofiltration for membrane separations, Chem. Eng. Prog. 90 (1994) 68–74.

 [137] A. Shahtalebi, M.H. Sarrafzadeh, Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater, Iran. J. Environ. Health Sci. Eng. 8 (2011) 106-110.

 [138] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. environ. Manag. 92 (2011) 2304-2347.

 [139] C. Adams, M. Asce, Y. Wang, K. Loftin, M. Meyer, Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng. 128 (2002) 253-260.

 [140] K. Kosutic, D. Dolar, D. A_sperger,  B. Kunst, Removal of antibiotic from model wastewater by RO/NF membrane, Sep. Purif. Technol. 53 (2007) 244-249.

 [141] S.Z. Li, X.Y. Li, D.Z. Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics, Sep. Purif. Technol. 34 (2004) 109-114.

 [142] J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane  drinking water treatment, Water Res. 42 (2008) 3601-3610.

 [143] I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Membr. Sci. 309 (2008) 94-101.

 [144] M. Qurie, M. Khamis, F. Malek, S. Nir, S. A. Bufo, J. Abbadi, L. Scrano and R. Karaman, Stability and removal of naproxen and its metabolite by advanced membrane wastewater treatment plant and micelle-clay complex, CLEAN – Soil, Air, Water, 2014, 42, 594-600.

[145] L. Jurecska, P. Dobosy, K. Barkács, É. Fenyvesi and G. Záray, Reprint of “Characterization of cyclodextrin containing nanofiltersfor removal of pharmaceutical residues, J. Pharm. Biomed. Anal., 2015, 106, 124-128.

[146] X.Y. Hu, J. Yang, J.D. Zhang, Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac, J. Hazard. Mater. 196 (2011) 220-227.

[147]    R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions, Applied Surface Science 256 (2010) 4447-4455.

[148] H. Li, D. Zhang, X.Z. Hand, B.S. Xing, Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics, Chemosphere 95 (2014) 150-155.

[149] S. Beier, S. Koster, K. Veltmann, H.F. Schroder, J. Pinnekamp, Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis, Water Science and Technology, 61 (2010) 1691-1698.

[150] S. Miralles-Cuevas, I. Oller, A. Ruiz Aguirre, J.A. Sánchez Pérez, S. Malato Rodríguez, Removal of pharmaceuticals at microg L-1 by combined nanofiltration and mild solar photo-Fenton, Chem. Eng. J., 239 (2014) 68-74.

[151] S. Miralles-Cuevas, F. Audino, I. Oller, R. Sánchez-Moreno, J.A. Sánchez Pérez, S. Malato, Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation), Separation and Purification Technology, 22 (2014) 515-522.

[152] P.X. Liu, H.M. Zhang, Y.J. Feng, F.L. Yang, J.P. Zhang, Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes, Chem. Eng. J., 240 (2014) 211-220.