Voltammetric Determination of Sumatriptan by an Overoxidized Poly(p-aminophenol) Modified Glassy Carbon Electrode

Document Type : Research Paper

Authors

1 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

2 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran. D-8 International University, Hamedan, Iran

10.22036/abcr.2021.259273.1558

Abstract

This study aims to develop a promising electrochemical sensor based on polymer film overoxidation following the electrochemical polymerization of p-aminophenol on a bare glassy carbon electrode (GCE) surface for the voltammetric determination of sumatriptan succinate (SUM). Cyclic voltammetry (CV), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and square wave voltammetry (SWV) were employed to characterize the electroanalytical performance and morphology of the modified electrode. The results indicated a significant improvement in electrode sensitivity to SUM after electrochemical polymerization and overoxidation of poly(p-aminophenol). We also investigated the effect of all effective instrumental and experimental parameters on sensor response. Under the optimum conditions (accumulation for 60 s at 0.055V and pH= 2.0) the electrode SWV response to SUM within the range 1.0-100.0 μmol L-1 with a limit of detection (LOD) of 0.294 μmol L-1 was linear under optimized conditions. We also attempted to evaluate the designed sensor selectivity to different interfering species, suggesting no significant interference. The designed sensor was also used to determine SUM in pharmaceutical preparations and human serum samples with minimal matrix effects, admissible recoveries (99-106), and satisfactory repeatability (1.2-5.1 %RSD). The proposed sensor exhibited admissible repeatability, reproducibility, and stability.

Keywords


[1]       P. Tfelt-Hansen, A. Hougaard, Expert. Opin. Drug. Metab. Toxicol. 9 (2012) 91.
[2]       K. Sagar, J.M.F. Alvarez, C. Hua, M.R. Smyth, R. Mundens, J. Pharm. Biomed. Anal. 10 (1992) 17.
[3]       S. Shahrokhian, Z. Kamalzadeh, R. Saberi, Electrochim. Acta 56 (2011) 10032.
[4]       M. Ghalkhani, S. Shahrokhian, F. Ghorbani-Bidkorbeh, Talanta 80 (2009) 31.
[5]       M.B. Gholivand, L. Mohammadi-Behzad, J. Electroanal. Chem. 712 (2014) 33.
[6]       M. Amiri, Z. Pakdel, A. Bezaatpour, S. Shahrokhian, Bioelectrochemistry 81 (2011) 81.
[7]       B.J. Sanghavi, P.K. Kalambate, S.P. Karna, A.K. Srivastava, Talanta 120 (2014) 1.
[8]       P.V. Sagar, D. Kumar, S. Dey, H.B. Samal, J. Pharm. Res. 3 (2010) 2930.
[9]       K.D. Altria, S.D. Filbey, Anal. Proc. 30 (1993) 363.
 
 
[10]    B.K. Ramu, K. Raghubabu, Int. J. Appl. Biol. Pharm. Technol. 2 (2011) 86.
[11]    K. Vishwanathan, M. G. Bartlett, J. T. Stewart, Rapid. Commun. Mass. Spectrom. 14 (2000) 168.
[12]    H.M. Lotfy, M.R. Rezk, A.M. Michael, M.A. Shehata, Chromatographia 76 (2013) 187.
[13]    K. NCheng, M. JRedrup, A. Barrow, P. NWilliams, J. Pharm. Biomed. Anal. 17 (1998) 399.
[14]    S. Ebrahimi, A. Afkhami, T. Madrakian, J. Electroanal. Chem. 838 (2019) 186.
[15]    B. Mekassa, M. Tessema, B.S. Chandravanshi, Sens. Biosensing. Res. 16 (2017) 46.
[16]    N. Rezvani Jalal, T. Madrakian, A. Afkhami, A. Ghoorchian, ACS Appl. Mater. Interfaces 12 (2019) 4859.
[17]    H. Xiao, W. Wang, S. Pi, Y. Cheng, Q. Xi, Anal. Chim. Acta 1135 (2020) 20.
[18]    P.T. Pınara, Y. Yardıma, Z. Şentürk, Diam. Relat. Mater. 101 (2020) 107649.
[19]    M. Tefera, A. Geto, M. Tessema, S. Admassie, Food Chem. 210 (2016) 156.
[20]    B.R.L. Ferraz, F.R.F. Leite, A.R. Malagutti, Talanta 154 (2016) 197.
[21]    Z. Mofidi, P. Norouzi, B. Larijani, S. Seidi, M.R. Ganjali, M. Morshedi, J. Electroanal. Chem. 813 (2018) 83.
[22]    A.M. Granero, G.D. Pierini, S.N. Robledo, M.S.D. Nezio, H. Fernández, M.A. Zon, Microchem. J. 129 (2016) 205.
[23]    P. Norouzi, M.A. Eshraghi, M. Ebrahimi, J. Appl. Chem. Res. 13 (2019) 24.
[24]    F. Ferdosian, M. Ebadi, R.Z. Mehrabian, M.A. Golsefidi, A.V. Moradi, Sci. Rep. 9 (2019) 3940.
 
 
 
 
 
 
 
 
 
 
 
 
 
[25]    M. Afzali, A. Mostafavi, T. Shamspur, Talanta 196 (2019) 92.
[26]    M.B. Gholivand, E. Ahmadi, Russ. J. Electrochem. 55 (2019) 1151.
[27]    M. Afzali, A. Mostafavi, T. Shamspur, Biosens. Bioelectron. 143 (2019) 111620.
[28]    M. Wang, M. Cui, W. Liu, X. Liu, J. Electroanal. Chem. 832 (2019) 174.
[29]    M. Lee, J.L. Thomas, W. Liu, Z. Zhang, B. Liu, C. Yang, H. Lin, Microchim. Acta 186 (2019) 695.
[30]    S.D. GunaVathana, P. Thivy, J. Wilson, A. CyracPeter, J. Mol. Struct. 1205 (2020) 127649.
[31]    L. Liu, Z. Yin, Z. Yang, Bioelectrochemistry 79 (2010) 84.
[32]    C. Wang, Z. Xiong, P. Sun, R. Wang, X. Zhao, Q. Wang, J. Electroanal. Chem. 801 (2017) 395.
[33]     S.N. Vieira, L.F. Ferreira, D.L. Franco, A.S. Afonso, R.A. Goncalves, A.G. Brito-Madurro, J.M. Madurro, Macromol. Symp. 245 (2006) 236.
[34]    H.A. Menezes, G. Maia, J. Electroanal. Chem. 586 (2006) 39.
[35]    E. Ekinci, A.A. Karagözler, A.E. Karagözler, Electroanalysis 8 (1996) 571.
[36]    L. Ferreira, J. Boodts, A. Brito-Madurro, J.M. Madurro, Polym. Int. 57 (2008) 644.
[37]    Ç. Koçak, Z. Dursun, J. Electroanal. Chem. 694 (2013) 94.
[38]    T. Madrakian, S. Maleki, M. Heidari, A. Afkhami, Mater. Sci. Eng. C 63 (2016) 637.
[39]    N. Rezvani Jalal, T. Madrakian, A. Afkhami, M. Ghamsari, J. Electroanal. Chem. 833 (2019) 281.
[40]    A. Afkhami, T. Madrakian, H. Ghaedi, H. Khanmohammadi, Electrochim. Acta 66 (2012) 255.