Aptamer-based Electrochemical Detection of Tyrosinamide Using Metal-organic Frameworks/silver Nanoparticles Modified Glassy Carbon Electrode

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran

2 Department of Chemistry, Khorramabad Branch Islamic Azad University Khorramabad, Iran

10.22036/abcr.2021.261628.1566

Abstract

In this report, a new aptamer-based assay was presented reporting the electrochemical aptasensing for sensing tyrosinamide (Tyr-NH2). This strategy was relied on unbeatable conformational flexibility and specific recognition of aptamers. The tyrosinamide aptamer (Tyr-NH2-aptamer) was immobilized onto the metal-organic frameworks/silver nanoparticles modified glassy carbon electrode and hexacyanoferrate was selected as a probe to monitor interface variations during modification of the electrode and the aptamer conformational change generated by the Tyr-NH2 binding. Results showed that measurements by using electrochemical impedance spectroscopy had linear with the Tyr-NH2 concentrations in range of 0.01-0.25 nM and 0.25-1.15 nM. Detection limit of this system was found to be 2.3 pM. This method was also used to the Tyr-NH2 detection in serum samples successfully. Remarkable simplicity, ease of use and low-cost, make methodology as sensitive analytical system for sensing of the Tyr-NH2 that can be miniaturized. This strategy offers some promising advantages in reliable detection of the Tyr-NH2, which may be helpful in the routine analysis.

Keywords


[1]       H. Sun, Y. Zu, Molecules 20 (2015) 11959.
[2]       Y.S. Kim, M.B. Gu, Adv. Biochem. Eng. Biotechnol, 140 (2014) 29.
[3]       T. Hermann, D.J. Patel, Science (80), 287 (2000) 820.
[4]       A. Mokhtarzadeh, M. Tabarzad, J. Ranjbari, M. de la Guardia, M. Hejazi, M. Ramezani, TrAC Trends Anal. Chem. 82 (2016) 316.
[5]       W. Argoubi, A. Sánchez, C. Parrado, N. Raouafi, R. Villalonga, Sens. Actuators B Chem. 255 (2018) 309.
[6]       R. Nezlin, Mol. Immunol. 70 (2016) 149.
[7]       K. Ghanbari, M. Roushani, Sens. Actuators B Chem. 258 (2018) 1066.       
[8]       N. Alizadeh, R. Hallaj, A. Salimi, Biosens. Bioelectron. 94 (2017) 184.
[9]       C. Ren, H. Li, X. Lu, J. Qian, M. Zhu, W. Chen, Q. Liu, N. Hao, H. Li, K. Wang, Actuators B Chem. 25 (2017) 192.
[10]    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science (80), 341 (2013) 1.
[11]    X.F. Wang, X.Z. Song, K.M. Sun, L. Cheng, W. Ma, Polyhedron 152 (2018) 155.
[12]    L. Liu, Y. Zhou, S. Liu, M. Xu, Chem. Electro. Chem. 5 (2018) 6.
[13]    M. Chen, N. Gan, Y. Zhou, T. Li, Q. Xu, Y. Cao, Y. Chen, Talanta 161 (2016) 867.
[14]    X. Dai, X. Shi, C. Huo, X. Wang, Thermochim. Acta 657 (2017) 39.
[15]    Z. Zhang, H. Ji, Y. Song, S. Zhang, M. Wang, C. Jia, JY. Tian, L. He, X. Zhang, C.S. Liu, Biosens. Bioelectron. 94 (2017) 358.
[16]    Y. Hu, L. Dai, D. Liu, W. Du, Y. Wang, Renew. Sustain. Energy Rev. 91 (2018) 793.
[17]    Y. Wang, Y. Zhu, A. Binyam, M. Liu, Y. Wu, F. Li, Biosens. Bioelectron. 86 (2016) 432.
[18]    C.  He,  K. Lu, D. Liu, W. Lin, J. Am. Chem. Soc. 136
 
 
 
 
 
 
 
 
 
(2014) 5181.
[19]    X. Wei, L. Zheng, F. Luo, Z. Lin, L. Guo, B. Qiu, G. Chen, J. Mater. Chem. B 1 (2013) 1812.
[20]    X. Wang, X. Lu, L. Wu, J. Chen, Biosens. Bioelectron. 65 (2015) 295.
[21]    V. Safarifard, A. Morsali, Ultrason. Sonochem. 40 (2018) 921.
[22]    M. Roushani, Z. Saedi, T. Musa Beygi, J. Taiwan Inst. Chem. Eng. 6 (2016) 164.
[23]    M. Roushani, A. Valipour, Z. Saedi, Sens. Actuators B Chem. 233 (2016) 419.
[24]    A.A. Ferguson, S. Roy, K.N. Kormanik, Y. Kim, K.J. Dumas, V.B. Ritov, D. Matern, P.J. Hu, A.L. Fisher, PLoS Genet 9 (2013) 1.
[25]    E.J. Merino, K.M. Weeks, J. Am. Chem. Soc. 127 (2005) 12766.
[26]    J. Ruta, S. Perrier, C. Ravelet, J. Fize, E. Peyrin, Anal. Chem. 81 (2009) 7468.
[27]    P.H. Lin, S.L. Yen, M.S. Lin, Y. Chang, S.R. Louis, A. Higuchi, W.Y. Chen, J. Phys. Chem. B 112 (2008) 6665.
[28]    Z. Zhu, T. Schmidt, M. Mahrous, V. Guieu, S. Perrier, C. Ravelet, E. Peyrin, Anal. Chim. Acta 707 (2011) 191.
[29]    M. Michaud, E. Jourdan, C. Ravelet, A. Villet, A. Ravel, C. Grosset, E. Peyrin, Anal. Chem. 76 (2004) 1015.
[30]    E. Vianini, M. Palumbo, B. Gatto, Bioorgan. Med. Chem. 9 (2011) 2543.
[31]    K. Ghanbari, M. Roushani, E. Soheyli, R. Sahraei, Mater. Sci. Eng. C 102 (2019) 653.
[32]    G.L. Wang, Y.M. Dong, Y.X. Zhu, W.J. Zhang, C. Wang, H.J. Jiao, Analyst 136 (2011) 5256.
[33]    D.M. Ciurtin, Y.B. Dong, M.D. Smith, T. Barclay, HC. Zur Loye, Inorg. Chem. 40 (2001) 2825.
[34]    V. Safarifard, A. Morsali, Cryst. Eng. Comm. 16 (2014) 8660.