Fabrication and Characterization of the Green Synthesized Magnetic Chitosan-zinc Nanocomposites: A Reusable and Effective Multifunctional Nanocatalyst for the Reduction of Organic Pollutants

Document Type : Research Paper

Authors

1 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of Biology, Faculty of sciences, Shahid Bahonar university of Kerman, Kerman, Iran

Abstract

Bimetallic nanoparticles have numerous applications in different areas, including catalysis, medicine, optics, and so on. Due to numerous intrinsic disadvantages and potentially toxic chemical procedures, finding nontoxic, green, cost-effective, and eco-friendly approaches for the production of bimetallic nanoparticles is much desired. In this study, Zn NPs, Zn/Fe3O4 NPs, and Zn/Chitosan/Fe3O4 nanocomposites were synthesized via a one-pot procedure by using leave extract of Quercus brantii, in the absence of any dangerous components. The catalytic capacity of the green synthesized Zn/Chitosan/Fe3O4 nanocomposite was considered for the degradation of environmental pollutants, including Congo red (CR), Methylene blue (MB), Cr(VI), and 4-nitrophenol (4-NP). The Zn/Chitosan/Fe3O4 nanocomposites have been morphologically characterized using UV–Vis, SEM, and EDX studies. The antioxidant reducing and antibacterial activities of Zn/Chitosan/Fe3O4 nanocomposites have been considered. Our results showed that this nanocomposite could be reused five times for removal of Congo red (CR), Methylene blue (MB), Cr(VI), and four times for reduction of 4-nitrophenol (4-NP), without substantial reduction in the catalytic capacity. Results showed the high potential catalytic activity of Zn/Chitosan/Fe3O4 nanocomposite for the reduction of organic pollutants.

Keywords


[1]           M.C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.
[2]           P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. 110 (2006) 7238.
[3]           S.K. Krishnan, E. Prokhorov, D. Bahena, R. Esparza, M. Meyyappan, ACS Omega 2 (2017) 1896.
[4]           M. Blosi, S. Ortelli, A.L. Costa, M. Dondi, A. Lolli, S. Andreoli, P. Benito, S. Albonetti, Materials 9 (2016) 550.
[5]           H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol. 44 (2016) 376.
[6]           S.R. Khan, S. Jamil, M.R.S.A. Janjua, Chem. Phys. Lett. 710 (2018) 45.
[7]           C.J. Murphy, T.K. Sau,  A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. 109 (2005) 13857.
[8]           T. Mazhar, V. Shrivastava, R.S. Tomar, Int. J. Pharm. Sci. Res. 9 (2017)102.
[9]           P. Srinoi, Y.T. Chen, V. Vittur, M. Marquez, T. Lee, Appl. Sci. 8 (2018)1106.
[10]        M. Curri, R. Comparelli, P. Cozzoli, G. Mascolo, A. Agostiano, Mater. Sci. Eng. C 23 (2003) 285.
[11]        A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Appl. Catal. B 79 (2008) 270.
[12]        W. Li, S. Zhao, B. Qi, Y. Du, X. Wang, M. Huo, Appl. Catal. B 92 (2009) 333.
[13]        P. Saikia, A.T. Miah, P.P. Das, J. Chem. Sci. 129 (2017) 81.
[14]        V. Vidhu, D. Philip, Micron 56 (2014) 54.
 
 
[15]        F. Godínez-Salomón, R.N. Mendoza-Cruz, M.J. Arellano-Jimenez, M. Jose-Yacaman, C.P. Rhodes, ACS Appl. Mater. Interface 9 (2017) 18660.
[16]        Z. Han, S. Li, F. Jiang, T. Wang, X. Ma, J. Gong, Nanoscale 6 (2014) 10000.
[17]        W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlucker, J. Am. Chem. Soc. 133 (2011) 19302.
[18]        R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, Z. Hou, Carbon 50 (2012) 586.
[19]        R.V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science 342 (2013) 1073.
[20]        T. Vincent, E. Guibal, Langmuir 19 (2003) 8475.
[21]        X. Xu, H. Li, H. Xie, Y. Ma, T. Chen, J. Wang, J. Mater. Res. 32 (2017) 1777.
[22]        Y. Yang, W. Xiao, X. Feng, Y. Xiong, M. Gong, T. Shen, Y. Lu, H.D. Abruña, D. Wang, ACS Nano. 13 (2019) 5968.
[23]        L. Yi, W. Wei, C. Zhao, C. Yang, L. Tian, J. Liu, X. Wang, Electrochim. Acta 158 (2015) 209.
[24]        J. Hambrock, M.K. Schröter, A. Birkner, C. Wöll, R.A. Fischer, Chem. Mater. 15 (2003) 4217.
[25]        Z. Zhang, Y. Chen, S. He, J. Zhang, X. Xu, Y. Yang, F. Nosheen, F. Saleem, W. He, X. Wang, Angew. Chem. Int. Ed. 53 (2014) 12517.
[26]        K. Sathya, R. Saravanathamizhan, G. Baskar, Mol. Biol. Rep. 45 (2018) 1397.
[27]        S.R. Khan, M. Batool, S. Jamil, S. Bibi, S. Abid, M.R.S.A. Janjua, J. Inorg. Organomet. Polym. 30 (2020) 438.
[28]        R. Weissleder, D.D. Stark, B.L. Engelstad, B.R. Bacon, C.C. Compton, D.L. White, P. Jacobs, J. Lewis, Am. J. Roentgenol. 152 (1989) 167.
[29]        C. Sun, K. Du, C. Fang, N. Bhattarai, O. Veiseh, F. Kievit, Z. Stephen, D. Lee, R.G. Ellenbogen, B. Ratner, M. Zhang, ACS Nano 4 (2010) 2402.
[30]        V. Smuleac, R. Varma, S. Sikdar, D. Bhattacharyya, J. Membr. Sci. 379 (2011) 131.
[31]        L.M. Ma, Z.G. Ding, T.Y. Gao, R.F. Zhou, W.Y. Xu, J. Liu, Chemosphere 55 (2004) 1207.
[32]        A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Environ. Sci. Technol. 41 (2007) 7437.
[33]        G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Inorg. Chem. 34 (1995) 28.
 
 
[34]        F. He, D.Y. Zhao, Environ. Sci. Technol. 41 (2007) 6216.
[35]        C.P. Tso, D.T.F. Kuo, Y.H. Shih, Chemosphere 250 (2020) 126155.
[36]        P. Kaur, B. Kumar, V. Kumar, R. Kumar, Tetrahedron Lett. 59 (2018) 1986.
[37]        N. Alhokbany, T. Ahama, Ruksana, M. Naushad, S.M. Alshehri, Compos. B Eng. 173 (2019) 106950.
[38]        M.J. Laudenslager, J.D. Schiffman, C.L. Schauer, Biomacromolecules 9 (2008) 2682.
[39]        M.F. Zayed, W.H. Eisa, A.E.M. Hosam, A.M.A. Zeid, ‎J. Alloys Compd. 835 (2020) 155306.
[40]        N.H. Abdullah, K. Shameli, E.C. Abdullah, L.C. Abdullah, Compos. B Eng. 162 (2019) 538.
[41]        L. Bergamonti, C. Bergonzi, C. Graiff, P.P. Lottici, R. Bettini, L. Elviri, Water Res. 163 (2019) 114841.
[42]        S. Taghavi Fardood, A. Ramazani, S. Moradi, P. Azimzadeh Asiabi, J. Mater. Sci. 28 (2017) 13596.
[43]        S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, J. Appl. Chem. Res. 11 (2017) 19.
[44]        K.P. Gattu, A.A. Kashale, K. Ghule, V.H. Ingole, R. Sharma, N.G. Deshpande, A.V. Ghule, J. Mater. Sci. 28 (2017) 13209.
[45]        R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, J. Mater. Sci. 28 (2017) 10374.
[46]        M. Oyaizu, Jpn. J. Soil Sci. Plant Nutr. 44 (1986) 307.
[47]        K.V. Dhandapani, D. Anbumani, A. D. Gandhi, P. Annamalai, B.S. Muthuvenkatachalam, P. Kavitha, B. Ranganathan, Biocatal. Agric. Biotechnol. 24 (2020) 101517.
[48]        N. Mirzaei, A. Mirzaei, Int. J. Biol. Pharm. Allied. Sci. 2 (2013) 620.
[49]        H. Korbekandi, M.R. Chitsazi, G. Asghari, R. Bahri Najafi, A. Badii, S. Iravani, Pharm. Bio. 53 (2015) 807.
[50]        I. Mesgarzadeh, A.R. Akbarzadeh, R. Rahimi, A. Maleki, Retrograde, Z. Phys. Chem. 232 (2017) 1.
[51]        M. Maham, M. Nasrollahzadeh, S.M. Sajadi, M. Nekoei, J. Colloid Interface Sci. 497 (2017) 33.
[52]        A.K. Singh, P. Pal, V. Gupta, T.P. Yadav, V. Gupta, S.P. Singh, Mater. Chem. Phys. 203 (2018) 40.
[53]        M.A. Alenizi, R. Kumar, M. Aslam, F.A. Alseroury, M.A. Barakat, Sci. Rep. 9 (2019) 12091.
 
 
[54]        B. Choudhury, M. Dey, A. Choudhury, Int. Nano Lett. 3 (2013) 25.
[55]        K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, RSC Adv. 9 (2019) 14638.
[56]        M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Sep. Sci. Technol. 191 (2018) 295.
[57]        A.M. Al-Sabagh, N.G. Kandile, R.A. El-Ghazawy, M.R. Noor El-Din, E.A. Elsharaky, Egypt J. Petr. 22 (2013) 531.
[58]        C.K. Choo, X.Y. Kong, T.L. Goh, G.C. Ngoh, B.A. Horri, B. Salamatinia, Carbohydr. Polym. 138 (2016) 16.
[59]        L.H. Gaabour, Results in Physics 7 (2017) 2153.
[60]         G.T. Fu, X. Jiang, R. Wu, S.H. Wei, D.M. Sun, Y.W. Tang, T.H. Lu, Y. Chen, ACS Appl. Mater. Interfaces 6 (2014) 22790.
[61]        K. Bhowmik, A. Mukherjee, M.K. Mishra, G. De, Langmuir 30 (2014) 3209.
[62]        M. Atarod, M. Nasrollahzadeh, S.M. Sajadi, RSC Adv. 5 (2015) 91532.
[63]        A. Omidvar, B. Jaleh, M. Nasrollahzadeh, H.R. Dasmeh, Chem. Eng. Res. Des. 121 (2017) 339.
[64]        A. Taravati, P.B. Jaleh, M. Nasrollahzadeh, Z. Issaabadi, Sep. Purif. Technol. 225 (2019) 33.
[65]        M. Sorbiun, E. Shayegan-Mehr, A. Ramazani, S. Taghavi-Fardood, J. Mater. Sci: Mater. Electron. 29 (2018) 2806.
[66]        M. Nasrollahzadeh, B. Jaleh, T. Baran, R.S. Varma, Clean Technol. Env. Policy 22 (2020) 325.
[67]        E.B. Kurutas, Nutr. J. 15 (2015) 71.
[68]        D. Das, P. Nath, A. Phukon, A. Kalita, S.K. Dolui, Colloids Surf. B 111 (2013) 556.
[69]        S. Nishaa, M. Vishnupriya, J.M. Sasikumar, P.C. Hephzibah, V.K. Gopalakrishnan, Asian J. Pharmaceut. Clin. Res. 5 (2012) 85.
[70]        I. Gulcin, M. Oktay, E. Kırecc, O.I. Kufrevıoglu, Food Chem. 83 (2003) 371.
[71]        K.V. Dhandapani, D. Anbumani, A.D. Gandhi, B. Ranganathan, Biocatal. Agric. Biotechnol. 24 (2020) 101517.
[72]        N.M. Ngoepe, Z. Mbita, M. Mathipa, N. Mketo, B. Ntsendwana, N.C. Hintsho-Mbit, Ceram. Int. 44 (2018) 16999.
[73]        S. Sumbal, A. Nadeem, S. Naz, J. S. Ali, A. Mannan,
 
 
M. Zia, Biotechnol. Rep. 22 (2019) 338.
[74]        M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Nanomed. Nanotechnol. Biol. Med. 7 (2011) 184.
[75]        L. Wang, C. Hu, L. Shao, Int. J. Nanomed. 12 (2017) 1227.
[76]        J.T. Seil, T.J. Webster, Nanotechnology 23 (2012) 495101.
[77]        S. Nair, A. Sasidharan, V.D. Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, J. Mater. Sci. Mater. Med. 20 (2009) 235.
[78]        S.J. Lam, N.M. O’Brien-Simpson, N. Pantarat, A. Sulistio, E.H. Wong, Y.Y. Chen, G.G. Qiao, Nat. Microbiol. 11 (2016) 16162.
[79]        A. Ahmad, S. Ullah, W. Ahmad, Q. Yuan, R. Taj, A. U. Khan, A. U. Rahman, U. A. Khan, J. Photochem. Photobiol. B 203 (2020)111743.
[80]        U. Kadiyala, E.S. Turali-Emre, J.H. Bahng, N.A. Kotov, J.S. VanEpps, Nanoscale 10 (2018) 4927.
[81]        Z. Wang, C. Xu, G. Gao, X. Li, Rsc Advances. 4 (2014) 13644.
[82]        A. Goyal, S. Bansal, S. Singhal, Int. J. Hydrog. Energy. 39 (2014) 4895.
[83]        S. Li, S. Guo, H. Yang, G. Gou, R. Ren, J. Li, Z. Dong, J. Jin, J. Ma, J. Hazard. Mater. 270 (2014) 11.
[84]        K.L. Wu, R. Yu, X.W. Wei, Cryst. Eng. Comm. 14 (2012) 7626.
[85]        Z. Jiang, J. Xie, D. Jiang, X. Wei, M. Chen, Cryst. Eng. Comm. 21 (2013) 560.
[86]        B.J. Borah, H. Saikia, P. Bharali, New J. Chem. 38 (2014) 2748.
[87]        D. Shi, Z. Ouyang, Y. Zhao, J. Xiong, X. Shi, Nanomaterials 9 (2019) 1183.
[88]        T.N. Ravishankar, S. Muralikrishna, G. Nagaraju, T. Ramakrishnappa, Anal. Methods 7 (2015) 3493.
[89]        C. Prasad, S. Karlapudi, P. Venkateswarlu, I. Bahadur, S. Kumar, J. Mol. Liq. 240 (2017) 322.
[90]        J. Pal, M.K. Deb, Appl. Nanosci. 4 (2014) 967.
[91]        T. Madrakian, A. Afkhami, M. Ahmadi, Spectrochim Acta A Mol. Biomol. Spectrosc. 99 (2012) 102.
[92]        O.A. Kristiani, A. Haryono, J. Adv. Mater. Process 3 (2015) 39.
[93]        G.M. Nazeruddin, S.R. Prasad, Y.I. Shaikh, J. Ansari,     K.D.     Sonawane,    A.K.    Nayak,   M.B.
 
 
Deshmukh, P.S. Patil, B.M. Rathor, N.R. Prasad. Res. J. Life Sci. Bioinformat. Pharmaceut, Chem. Sci. 2 (2016) 6.
[94]        A.V. Ramesh, D. Rama-Devi, S. Mohan-Botsa, K. Basavaiah, J. Asian Ceram. Soc. 6 (2018) 145.
[95]        F. Mares, O. Barragan, J. López, R. Esparza, G. Rosas-Trejo, Mater. Res. Express. 6 (2019) 24.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[96]        G. Kheraldeen-Kara, M. Rabbani, J. Nanostruct. 9 (2019) 287.
[97]        P. Cheera, S. Karlapudi, G. Sellola, V. Ponneri, J. Mol. Liq. 221 (2016) 993.
[98]        P.A. Luque, O. Nava, C.A. Soto-Robles, A.R. Vilchis-Nestor, H.E. Garrafa-Galvez, A. Castro-Beltran, J. Mater. Sci. Mater. 29 (2018) 17638.