Application of Central Composite Design for Optimization of Coacervative Extraction of Cu(II) Using Anionic Surfactant

Document Type: Research Paper


1 Department of Chemistry, faculty of Science, Urmia University, Urmia, Iran

2 Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran


The aim of this work was to develop a new and simple coacervative extraction method for the preconcentration and spectrophotometric determination of Cu(II) in water samples. Dithizone was used as the chelating agent while an anionic surfactant, namely sodium dodecyl sulfate (SDS), was used as extracting agent at room temperature. Central composite design (CCD) based on response surface methodology (RSM) was employed to optimize main experimental parameters such as pH values of solutions, concentration of the surfactant and volume of the saturated salt. Analytical characteristics of the method such as limit of detection, linear range, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) were calculated under the optimum conditions. The calibration graph was linear in the range of 10-100 ng ml-1 with the detection limit of 3.8 ng ml-1. The interference effects of some anions and cations were also studied. The method was successfully applied for the determination of Cu(II) in water samples.


[1]       Şatıroğlu N., Arpa Ç., Cloud point extraction for the determination of trace copper in water samples by flame atomic absorption spectrometry, Microchim Acta., 2008; 162: 107-112. DOI 10.1007/s00604-007-0904-y.

[2]       Ulusoy H.I., Gürkan R., Akҫay M., Kinetic spectrophotometric determination of trace copper(II) ions by their catalytic effect on the reduction of brilliant cresyl blue by ascorbic acid, Turk J Chem., 2011; 35: 599-612. DOI 10.3906/kim-1101-968.

[3]       Shokrollahi A., Ghaedi M., Gharaghani S., Fathi M.R., Soylak M., Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry, Quim. Nova., 2008; 31: 70-74. DOI 10.1590/S0100-40422008000100015.

[4]       Yurtman-Gündüz Z., Aydın-Urucu O., Kök-Yetimoğlu E., Filik H., Cloud point extraction for the determination of trace copper(II) in environmental samples using a new synthesized reagent and flame atomic absorption spectrometry, Maced. J. Chem. Chem. Eng., 2013; 32: 69-78.

[5]       Oehme F.W., Toxicity of Heavy Metals in the Envi­ronment; Marcel Dekker, New York, 1978.

[6]       Moore J.M., Inorganic Contaminants of Surface Water; Springer Verlag, New York, 1991.

[7]       Liang P.,Yang J., Cloud point extraction preconcentration and spectrophotometric determination of copper in food and water samples using amino acid as the complexing agent, J. Food Compos. Anal., 2010; 23: 95-99. DOI 10.1016/j.jfca.2009.01.015.

[8]       Manzoori J., Karim-Nezhad Gh., Selective cloud point extraction and preconcentration of copper by the use of dithizone as a complexing agent, Iran. J. Chem. Chem. Eng., 2005; 24:47-52.

[9]       Bahram M., Khezri So., Khezri Sa. Cloud point extraction, preconcentration and spectrophotometric determination of nickel in water samples using dimethylglyoxime, Curr. Chem. Lett., 2013; 2: 49-56. DOI 10.5267/j.ccl.2012.11.001.

[10]   Bahram M., Nurallahzadeh N., Mohseni N., pH‑sensitive hydrogel for coacervative cloud point extraction and spectrophotometric determination of Cu (II): optimization by central composite design, J. Iran Chem. Soc., 2015. DOI 10.1007/s13738-015-0653-5.

[11]   Liu W., Zhao W.J., Chen J.B., Yang M.M., A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder, Anal. Chim. Acta, 2007; 605: 41-45. DOI 10.1016/j.aca.2007.10.034.

[12]   Depoi F.D., Bentlin F.R.S., Pozebon D., Methodology for Hg determination in honey using cloud point extraction and cold vapour-inductively coupled plasma optical emission spectrometry, Anal. Methods, 2010; 2: 180-185. DOI 10.1039/B9AY00189A.                                                                                                                     

[13]   Silva S.G., Oliveira P.V., Nóbrega J.A., Rocha F.R.P., Cloud point extraction to avoid interferences by structured background on nickel determination in plant materials by FAAS, Anal. Methods, 2009; 1: 68-70. DOI 10.1039/B9AY00010K.

[14]   Kazi T.G., Khan S., Baig J.A., Kolachi N.F., Afridi H.I., Shah A.Q., Determination of trace quantity of aluminium in dialysate concentrates using solid phase and cloud point extraction methods, Anal. Methods,2010; 2: 558-563. DOI 10.1039/B9AY00293F.

[15]   Pandurangappa M., Kumar K.S., Micellar mediated trace level mercury quantification through the rhodamine B hydrazide spirolactam ring opening process, Anal. Methods, 2011; 3: 715-723. DOI 10.1039/C0AY00693A.

[16]   Baliza P.X., Teixeira L.S.G., Lemos V.A., A procedure for determination of cobalt in water samples after dispersive liquid–liquid microextraction, Microchem. J., 2009; 93: 220-224. DOI 10.1016/j.microc.2009.07.009.

[17]   Bezerra M.A., Bruns R.E., Ferreira S.L.C., Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES, Anal. Chim. Acta, 2006; 580: 251-257.  DOI 10.1016/j.aca.2006.07.056.

[18]   Niazi A., Ghasemi J., Yazdanipour A., Simultaneous spectrophotometric determination of nitroaniline isomers after cloud point extraction by using least-squares support vector machines, Spectrochim. Acta A, 2007; 68: 523-530. DOI 10.1016/j.saa.2006.12.022.          

[19]   Purkait M.K., Banerjee S., Mewara S., Das Gupta S., De S., Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant, Water Res., 2005; 39: 3885-3890. DOI 10.1016/j.watres.2005.07.034.                                                                                                                        

[20]   Ghaedi M., Shokrollahi A., Ahmadi F., Rajabi H.R., Soylak M., Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry, J. Hazard. Mater., 2008; 150: 533-540. DOI 10.1016/j.jhazmat.2007.05.029.

[21]   Liu X., Chen X.H., Zhang Y.Y., Liu W.T., Bi K.S., Determination of arbidol in rat plasma by HPLC–UV using cloud-point extraction, J. Chromatogr. B, 2007; 856: 273-277. DOI 10.1016/j.jchromb.2007.06.009.

[22]   Portugal L.A., Ferreira H.S., dos Santos W.N.L., Ferreira S.L.C., Simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry, Microchem. J., 2007; 87: 77-80. DOI 10.1016/j.microc.2007.05.008.

[23]   Bezerra M.A., Arruda M.A.Z., Ferreira S.L.C., Cloud Point Extraction as a Procedure of Separation and Pre‐Concentration for Metal Determination Using Spectroanalytical Techniques: A Review, Appl. Spectrosc. Rev., 2005; 40: 269-299. DOI 10.1080/05704920500230880.

[24]   Yazdi A.S., Surfactant-based extraction methods, Trends Anal. Chem., 2011; 30: 918-929. DOI 10.1016/j.trac.2011.02.010.

[25]    Bahram M., Khezri S., Multivariate optimization of cloud point extraction for the simultaneous spectrophotometric determination of cobalt and nickel in water samples, Anal. Methods, 2012; 4: 384-393. DOI 10.1039/C2AY05527A.

[26]   Merino F., Rubio S., Perez-Bendito D., Acid-induced cloud point extraction and preconcentration of polycyclic aromatic hydrocarbons from environmental solid samples, J. Chromatogr. A, 2002; 962: 1-8. DOI 10.1016/S0021-9673(02)00503-4.

[27]   Sicilia D., Rubio S., Perez-Bendito D., Evaluation of the factors affecting extraction of organic compounds based on the acid-induced phase cloud point approach, Anal. Chim. Acta, 2002; 460: 13-22. DOI 10.1016/S0003-2670(02)00148-4.

[28]   Goryacheva I.Yu., Loginov A.S., Lavrova T.N., Popov M.A., Extraction preconcentration with anionic surfactants in acidic solutions, J. Anal. Chem., 2007; 62: 411-415. DOI 10.1134/S1061934807050036.

[29]   Sicilia D., Rubio S., Perez-Bendito D., Maniasso N., Zagatto E.A.G., Anionic surfactants in acid media: a new cloud point extraction approach for the determination of polycyclic aromatic hydrocarbons in environmental samples, Anal. Chim. Acta, 1999; 392: 29-38. DOI 10.1016/S0003-2670(99)00054-9.

[30]   Goryacheva I.Y., Shtykov S.N., Loginov A.S., Panteleeva I.V., Preconcentration and fluorimetric determination of polycyclic aromatic hydrocarbons based on the acid-induced cloud-point extraction with sodium dodecylsulfate, Anal. Bioanal. Chem., 2005; 382: 1413-1418. DOI 10.1007/s00216-005-3287-0.

[31]   Casero I., Sicilia D., Rubio S., Pérez-Bendito D., An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds, Anal. Chem., 1999; 71: 4519-4526. DOI 10.1021/ac990106g.

[32]   Stephan D.D., Werner J., Yeater R.P., Essential Regression and Experimental Design for Chemists and Engineers, MS excel add in software package, 1998-2001.

[33]    Bulacov I., Jirkovsky J., Muller M., Heimann R.B., Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy, Surf. Coat. Technol., 2006; 201: 255-264. DOI 10.1016/j.surfcoat.2005.11.117.

[34]    Siouf  A.M., Phan-Tan-Luu R., Optimization methods in chromatography and capillary electrophoresis, J. Chromatogr. A, 2000; 892: 75-106. DOI 10.1016/S0021-9673(00)00247-8.

[35]   Lundstedt T., Seifert E., Abramo L., Thelin B., Nyström A., Pettersen J., Bergman R.,  Experimental design and optimization, Chemom. Intell. Lab. Syst., 1998; 42: 3-40. DOI 10.1016/S0169-7439(98)00065-3.

[36]   Bahram M., Khezri S., Esmhoseini M., Experimental design for the optimization of micelle mediated extraction of malachite green using anionic surfactant, sodium dodecyl sulfate, Anal. Methods, 2011; 3: 1096–1100. DOI 10.1039/c0ay00781a.

[37]    Araujo P.W., Brereton R.G., Experimental design II. Optimization, Trends Anal. Chem., 1996; 15: 63-70. DOI 10.1016/0165-9936(96)80762-X.