Simultaneous Determination of Thiocyanate and Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO2-Fe Nanoparticles

Document Type: Research Paper

Authors

Professor Massoumi Laboratory, Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran

Abstract

A carbon ionic liquid electrode (CILE) modified with TiO2-Fe nanoparticles was constructed by incorporating TiO2-Fe nanoparticles into the paste matrix. Under the optimized experimental conditions, using differential pulse voltammetry (DPV), the oxidation of thiocyanate and oxalate were occurred at potentials of 0.740 V and 1.010 V, respectively, at the surface of the modified electrode. Observing a high peak current along with a suitable peak separation allowed introducing the first voltammetric sensor for simultaneous determination of these anions with high sensitivity without mutual interference. A wide linear range of 1.0 × 10-5-1.8 × 10-3 M for thiocyanate with a detection limit of 6.4 × 10-6 Mand a wide linear range of 5.0 × 10-5-3.0 × 10-3 M for oxalate with a detection limit of 2.3 × 10-5 M were obtained. The modified CILE showed good reproducibility, repeatability and storage stability as well as good selectivity. The proposed sensor was successfully applied for analysis of thiocyanate and oxalate in urine samples.

Keywords


[1] A.K. Singh, U.P. Singh, S. Mehtab, V. Aggarwal, Sens. Actuators B 125 (2007) 453–461

[2] Z. Glatz, S. Nováková, H. Sterbová, J. Chromatogr. A 916 (2001) 273–2777

[3] D. Connolly, L. Barron, B. Paulll, J. Chromatogr. B 767 (2002) 175–180

[4] M.S. Pearle, S.Y. Nakada,  Practical Controversies in medical management of stone disease, Springer Science, Business Media, New York (2014), chapter 2

[5] G. De Oliveira Neto, M. Tubino, O.E.S. Godinho, L.T. Kubota, J.R. Fernandes, J. Braz. Chem. Soc. 8 (1997) 47–51

[6] M. Lahti, J. Chem. Educ. 76 (1999)1281–1282

[7] J.F. Van Staden, A. Botha, Anal. Chim. Acta. 403 (2000) 279–286

[8] A.L. Allan, B.S. Fernandez-Band, E. Rubio, Microchem. J. 34 (1986) 51–55

[9] R.G. Bowler, Biochem. J. 38 (1944)385–388

[10] J. Su, Y.Q. Sun, F.J. Huo, Y.T. Yanga, C.X. Yin, Analyst 135 (2010) 2918–2923

[11] A. Gomez-Hens, M. Valcárcel, Analyst 107 (1982) 465–494

[12] J.S. Toraño, H.J.M. van Kan, Analyst 128 (2003) 838–843

[13] K. Funazo, M. Tanaka, T. Shono, J. Chromatogr. A 211 (1981) 361–368

[14] J.A. Rodriguez-Vázquez, Anal. Chim. Acta 73 (1974) 1–32

[15] J. Ye, R.P. Baldwin, Anal. Chem. 60 (1988) 1979–1982

[16] E. Wang,  A. Liu, Anal. Chim. Acta  252 (1991) 53–57

[17] E.F. Perez, G. de Oliveira Neto, L.T. Kubota, Sens. Actuators B 72 (2001) 80–85

[18] Q.Y. Ruan, X.Q. Zheng, B.L. Chen, Y. Xiao, X.X. Peng, D.W.M. Leung, E. Liu, J. Food Comp. Anal. 32 (2013) 6–11

[19] I. Rubinstein, C.R. Martin, A.J. Bard, Anal. Chem. 55 (1983) 1580–1582

[20] A. Soleymanpour, B. Shafaatian, H.S. Mirfakhraei, A. Rezaeifard, Talanta 116 (2013) 427–433

[21] R. Hönow, A. Simon, A. Hesse, Clin. Chim. Acta 318 (2002) 19–24

[22] B.G. Keevil, S. Thornton, Clin. Chem. 52 (2006) 2296–2299

[23] I.G. Casella , C.G. Zambonin, F. Prete, J. Chromatogr. A 833 (1999) 75–82

[24]  T. Toida, T. Togawa, S. Tanabe, T. Imanari, J. Chromatogr. B  308 (1984) 133–141

[25] C. Merusi, C. Corradini, A. Cavazza, C. Borromei, P. Salvadeo, Food Chem. 120 (2010) 615–620

[26] D. Kaniansky, M. Masár, J. Marák,  R. Bodor, J. Chromatogr. A 834 (1999) 133–178

[27] C. Johns, M. Mackaand, P.R. Haddad, Electrophoresis 24 (2003) 2150–2167

[28]  S. Chinaka, N. Takayama, Y. Michigami, K. Ueda, J. Chromatogr. B 713 (1998) 353–359

[29] B. López-Ruiz, J. Chromatogr. A 881 (2000) 607–627

[30] X Geng, S Zhang, Q Wang, Z Zhao,  J. Chromatogr. A 1192 (2008)187–190

[31] N. Bord, G. Cretier, J.L. Rocca, C. Bailly, J.P. Souchez, J. Chromatogr. A 1100 (2005) 223–229

[32] J. Xu, Y. Wang, Y. Xian, H. Li, L. Jin, K. Tanaka, H. Haraguchi, A. Itoh, Chromatographia 56 (2002) 449–453

[33] A. Bern, A. Rodes, J.M. Feliu, J. Electroanal. Chem. 563 (2004) 49–62

[34] T.A. Ivandini, T.N. Rao, A. Fujishima, Y. Einaga, Anal. Chem. 78 (2006) 3467–3471

[35] C.A. Martinez-Huitle, S. Ferro, S. Reyna, M. Cerro-López, A. De Battisti, M.A. Quiroz, J. Braz. Chem. Soc. 19 (2008) 150–156

[36] C.A. Martınez-Huitle, S. Ferro, A. De Battisti, Electrochim. Acta 49 (2004) 4027–4034

[37] K.I. Ozoemena, T. Nyokong, J. Electroanal. Chem. 579 (2005) 283–289

[38] J.A. Cox, T. Gray, Anal. Chem. 60 (1988)1710–1713

[39] E.G. Cookeas, CE Efstathiou, Analyst 119 (1994) 1607–1612

[40]  Y. Liu, J. Huang, D. Wang H. Hou, T. You, Anal. Methods 2 (2010) 855–859

[41] I.G. Casella, Electrochim. Acta 44 (1999) 3353–3360

[42] L.G. Shaidarova, I.A. Chelnokova, A.V. Gedmina, G.K. Budnikov, S.A. Ziganshina, A.A. Mozhanova, A.A. Bukharaev, J. Anal. Chem. 61 (2006) 375–381

[43] G.F. Wang, M.G. Li, Y.C. Gao, B Fang, Sensors 4 (2004) 147–155

[44] A. Safavi, S. Momeni, Electroanalysis 22 (2010) 2848–2855

[45]  A. Safavi,  N. Maleki, E. Farjami, Electroanalysis 21 (2009)  1533–1538

[46] A. Safavi, N. Maleki, F. Farjami, E. Farjami, J. Electroanal. Chem. 626 (2009) 75–79

[47] A. Fujishima X. Zhang, Comptes Rendus Chimie 9 (2006) 750–760

[48] G. Absalan M. Akhond, A. Bananejad, H. Ershadifar, J. Iran Chem. Soc. 12 (2015)1293–1301

[49] M. Qamara, B. Merzougui, D. Anjumb, A.S. Hakeema, Z.H. Yamani, D. Bahnemann, Catal. Today 230 (2014) 158–165

[50] J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180 (2006)196–204

[51] G. Absalan, M. Akhond, H. Ershadifar, J. Solid State Electrochem. 19 (2015) 24912499.

[52] A. Safavi, N. Maleki, H. Ershadifar, F. Tajabadi, Anal Chim Acta 674 (2010) 176–181

 [53] I. Ganesh, P.P. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Proc. Appl. Ceramics 6 (2012) 21–36

[54]  M. Zhoua,  J. Yu ,  B. Cheng , H. Yu, Mater Chem Phys 931 (2005) 159–163

[55] M. Opallo, A. Lesniewski, J. Electroanal. Chem. 656 (2011) 2–16

[56] N. Maleki, A. Safavi, F. Tajabadi, Electroanalysis 19 (2007) 2247–2250

 [57] P.T. Kissinger, W.R. Heineman, Laboratory techniques in electroanalytical chemistry, 2nd ed., Marcel Dekker Inc, New York, USA (1996), p.100

[58] B. Sljukic, R. Baron, R.G. Compton, Electroanalysis 19 (2007) 918 – 922

[60] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York (2001), p. 231

[61] L.C. Chen, C.C. Chang, H.C. Chang, Electrochim. Acta 53 (2008) 2883–2889

[62] R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton, Anal. Chem. 81 (2009) 435–442

[63] S. Chutipongtanate, V. Thongboonkerd, Anal. Biochem. 402 (2010) 110–112

[64] M.R. Ganjali, M. Yo

[59] M.M. Ardakani, M. Jalayer, H. Naeimi, A. Heidarnezhad, H.R. Zare, Biosens. Bioelectron. 21 (2006) 1156–1162

usefi, M. Javanbakht, T. Poursaberi, M. Salavati-Niassari, L. Hajiagha-Babaei, E. Latifi, M. Shamsipur, Anal. Sci. 18 (2002) 887–892