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     The novel application of interval variable iterative space shrinkage approach iVISSA and partial least squares PLS calibration for 
quantification of three overlapping pharmaceuticals (paracetamol, guaifenesin, and phenylephrine) is presented in this work. In addition to 
spectral overlapping, the drugs are available in the commercial tablet in varying proportions where paracetamol and guaifenesin are 20 to 
50 times higher than phenylephrine. Net analyte signal calculations indicated that pH has an high influence on drug overlapping, and the 
optimum pH was at 12.0, with a total overlapping 57-77% among solutes. To eliminate the influence of excipients on PLS calibration, all 
standard mixtures were prepared with a 5% level of excipients. For Guaifenesin, variable selection by NAS resulted in better PLS 
prediction. iVISSA, which developed under the condition that locations, widths, and combinations of selected intervals are optimized 
simultaneously, resulted in the excellent prediction of phenylephrine by selecting 34 spectral data in which the solute became intensely 
absorbed. Analysis of commercial tablet (250 mg paracetamol, 100 mg guaifenesin, 5 mg phenylephrine) with the help of NAS revealed 
that GUA was predicted with high accuracy (98.4%) and precision (RSD 3.9) using the range 225-239 nm. For phenylephrine, the selected 
intervals were 200-207, 224-225, 232-246, 250-254, 263, 267-270, 275, and 278-280 nm by iVISSA, which resulted in accurate 
quantification with high accuracy (104.3%) and precision (RSD 0.5). For paracetamol, including the entire range (200-300 nm, 101 points) 
was necessary for better PLS prediction while variables selection by NAS or iVISSA negatively affected PLS calibration for that drug. The 
accuracy and precision of the proposed method were validated against liquid chromatography and both methods were found statically 
comparable. 
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INTRODUCTION 
 
      Multivariate calibration substantially contributes to 
analytical chemistry and is often applied in many fields, 
including natural products, the pharmaceutical industry, the 
environment, and food research [1]. Multivariate calibration 
depends on statistical and mathematical tools to create 
quantitative relations between measured variables (i.e.,           
UV-Vis, IR, NMR signals) and physicochemical properties 
of the system under study, such as density, viscosity or 
concentration [1]. The main challenge in using  multivariate 
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calibration is the higher number of measured variables p 
compared to the number of samples n. This is known as a 
non-deterministic polynomial-time dilemma in statistical 
analysis [2,3]. For example, a modern IR instrument can 
generate a spectrum within the 4000-400 cm-1 range with a 
step of 2 cm-1 yielding 1801 variables for the measured 
sample. Hence, the number of variables is notably larger 
than the number of samples. The high-dimensional data 
represent a problem that most traditional statistical methods 
cannot cope with [2-4]. The standard regression estimators, 
including PLS and PCR, would produce unstable coefficient 
estimates with inflated standard errors when used with  
high-dimensional   data   (i.e., p >> n),  resulting in  reduced 
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statistical power and incorrect conclusions about 
relationships between independent and dependent variables 
[5]. Furthermore, when p exceeds n, traditional estimating 
methods simply cannot be used to produce model parameter 
estimates [5]. 
      There are two strategies to deal with high-dimensional 
data: a) dimension reduction and b) variable selection [5,6]. 
The main aim of the earlier methods is to compress the 
dimensionality of the data by excluding the redundant 
variables while keeping the informative ones [5,6]. The 
primary function of dimension reduction methods is to 
represent the original variable space with a lower dimension 
space [6]. The most common dimension reduction method is 
partial least squares (PLS) which is based on latent variables 
and has many applications in different fields, including food 
analysis, spectroscopy, and many other research areas [1,7]. 
Although PLS is an efficient dimension reduction method, it 
suffers from weak interpretability and the inability to 
remove redundant/noisy variables [5,6]. The performance of 
PLS calibration is significantly improved after proper 
variables selection, and this issue was verified as outlined in 
the literature [5,6]. For spectroscopic methods, variables 
selection should identify informative wavelengths among 
the entire spectrum needed for adequate modelling [5]. 
Removing the uninformative variables can improve PLS 
prediction for new samples [8]. Accordingly, variable 
selection methods are significant for picking up the 
informative variables to end up with a safe dimension 
reduction of the collected variables. The appropriate 
selection of useful variables and removing the 
uninformative ones is essential due to: a) creating factor-
based calibration methods (like PLS and PCR) using fewer 
numbers of factors, and b) enhancing the prediction output 
of the calibration model and especially for unknown 
samples [9,10]. 
      Among spectral measurements, UV, Vis, and IR often 
contain many analytical details that should be carefully 
selected to get excellent PLS calibration. In addition, the 
appropriate selection of variables improves PLS 
performance toward spectrally overlapping analytical 
systems [11]. Variable-selection approaches are often 
categorized into a) single-variable selection approach which 
separately assesses the value of each variable, and the       
most  applied  methods  are  genetic  algorithm,  ant  colony 

 
 
optimization, stepwise selection, variable interval space 
shrinkage approach VISSA, and regression coefficients 
[5,10], and b) interval-variable selection approach which 
picks up informative intervals as input for building models 
and the most adopted methods are moving window-partial 
least squares, net analyte signal regression plot, interval 
partial least squares, bootstrap-based methods, and interval 
successive projection algorithm [5,10]. In the second 
approach, the variables (spectral data in this work) are 
divided into equal-space intervals, and the interval(s) that 
improves model workability is chosen [9,5,11]. It is 
interesting to mention that searching combination moving 
window-partial least squares (SCMW-PLS) can monitor        
a combination of intervals but after being selected 
individually (not simultaneously) [10,11]. Methods which 
search for intervals are more practical for analytical 
applications as most compounds often absorb over wide 
bands, and it is rare to find a single wavelength absorber. 
Hence, picking up intervals of variables instead of a one-by-
one strategy seems logical for better model prediction [12]. 
The aforementioned interval selection approaches, on the 
other hand, make it challenging to obtain optimized 
intervals since the widths and combinations of the intervals 
are not optimized at the same time [5,10]. 
      An advanced variable selection method was recently 
proposed for spectroscopic measurements, which often 
generate tremendous variables for the sample [5]. The 
method is known as interval variable iterative space 
shrinkage approach iVISSA and was developed under the 
condition that locations, widths and combinations of 
selected intervals are optimized simultaneously [10]. None 
of the published methods has such an advantage. iVISSA is 
a modified form of the old VISSA algorithm that performs 
global and local searches simultaneously to intelligently 
optimize the locations, widths, and combinations of variable 
intervals to improve calibration outputs [5,10]. In a 
systematic study, both single and interval variable selection 
methods including iPLS, MW-PLS, GA-PLS, and iVISSA 
were tested to extract informative IR spectra bands to 
quantify different ingredients in food and drug samples [10]. 
In fact, the earlier study indicated the high performance of 
iVISSA to extract informative spectra intervals which 
finally improved PLS performance. At the same time, the 
performance of GA-PLS outperformed  the  common  MW- 
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PLS [10]. It should be mentioned that GA can be used as a 
single and interval variable selector as outlined in the 
literature [10].        
      Many pharmaceutical combinations have intense 
spectral overlapping, requiring proper input variables before 
PLS calibration [11,13]. So far, a net-analyte signal 
regression plot was effectively applied to many 
pharmaceutical formulations to pick up the informative 
spectral regions before modelling [14,15]. Paracetamol 
PAR, Guaifenesin GUA, and Phenylephrine PHE is a 
relatively new formulation and has an intense overlapping 
between GUA and PHE [16]. Moreover, PHE is present in a 
lower fraction than PAR and GUA, which is an extra 
challenge for PLS calibration. Paracetamol (N-(4-
hydroxyphenyl) acetamide) is a common pain reliever             
and fever reducer [16]. Guaifenesin ((2RS)-3-2-
methoxyphenoxy)) is an expectorant drug; it assists in the 
bringing up of phlegm from the airway in acute respiratory 
tract infections [17]. Phenylephrine (1R)-1-(3-
hydroxyphenyl)-2-(methylamino)ethanol Hydrochloride) is 
a selective α1-adrenergic receptor agonist and used as a 
decongestant [16]. The structural formulae of the tested 
compounds are provided in the following scheme:  
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Paracetamol (pKa = 9.4)        Guaifenesin (pKa = 13.6) 

 

OH N
H
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Phenylephrine (pKa = 9.1) 

 
The combination PAR-GUA-PHE is commercially available 
under different trade names since 2016 with levels of 250, 
100, and 5 mg/tablet [17]. Limited research papers have 
been reported to quantify PAR-GUA-PHE using 
multivariate calibration [16] compared to liquid 
chromatography [18]. Although the tested ternary drug 
system was quantified using wavelet transform method [19] 
and PLS calibration [20], the application of iVISSA along 
with PLS calibration has not been reported so far which 
adds more value to the current research.   
      The  present   research   aims   to   apply  iVISSA  as  an 

 
 
advanced interval variable selection methodology combined 
with PLS calibration to measure the strongly overlapping 
combination PAR-GUA-PHE. For more assessment, 
variable selection is also carried out using the net-analyte 
signal methodology that received great attention in 
pharmaceutical analysis. The performance of both 
methodologies will be addressed taking into account the 
intense spectral overlapping among drugs.     
 
THEORY  
 
      Symbols: The following notations are used in this 
section. Matrix is represented by a capital letter in boldface 
and vector is represented by a lowercase letter in boldface. 
A scalar is represented as a lowercase italic letter. Within 
the text: data matrix Am×n is contained absorbance values 
of m calibration samples measured at n wavelengths, the 
pure analyte spectrum k is given as sk of 1×n dimension, 
ck(m×1) is a vector collected calibration concentrations of 
analyte k, and r(1×n) is the vector collected absorbance data 
of the unknown sample. 
 
PLS Regression 
      Partially least-squares calibration is a two-block 
predictive method applied to estimate latent variables 
needed to correlate two data sets simultaneously: spectral 
data and physical/chemical properties. PLS regression or 
calibration is used to develop a linear model that allows for 
predicting a preferred characteristic (c) from a measured 
spectrum (a). In matrix and vector forms, the following 
linear model is proposed: c = Ab where b has the calibration 
sensitivities collected in the calibration step [1]. The 
calibration performance of PLS can be notably improved 
after running a suitable variable selection approach [5].    
 
Net Analyte Signal Methodology 
      The net analyte signal NAS of k is the portion of its 
spectrum that is orthogonal to the space encompassed by the 
spectra of all other analytes or interferences in a particular 
mixture [21-25]. Lorber's approach for inverse multivariate 
calibrations was used in this research [29-30]. At the start, 
PLS calibration was carried out using A & ck using 
optimum PLS-factors. Matrix A was then reconstructed to 
(Â). Matrix Â-k  collecting  absorbance  signals of  all  drugs  
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expect k was calculated using the rank annihilation approach 
[21]. The projection matrix, which is orthogonal to Â-k, is 
estimated as [21,22]: 
 
      H = I − (Â-k) + Â-k                  (1) 
  
where “+” donates the pseudo-inverse matrix while I is the 
identity matrix. Multiplying H by r (the spectra of the 
mixture) gives the net analyte signal vector of solute k (r∗k) 
[24]:  
 
      r∗k = Hr                  (2) 
 
In the above equation, if spectrum r is substituted by the 
pure spectrum of solute k (sk), then the left-hand side of      
Eq. (2) will produce the net pure-spectrum of k, i.e. the 
portion of k's pure spectrum that is orthogonal to other 
absorbing solutes' spectra (s∗k). Analytical figures of merit 
such as sensitivity, selectivity, and detection limit are 
estimated using NAS methodology [23,24]. These measures 
are used to evaluate the effectiveness of a particular 
analytical methodology.  
The norm of the s∗k vector is used to define sensitivity [23]. 
 
      SEN = ǁsk∗ǁ                                     (3) 
 
On the other hand, selectivity SEL is related to the quantity 
of signal needed for prediction. Moreover, SEL measures 
the relative quantity of signal not affected by spectral 
overlapping and the higher value the lower overlapping of 
the solute. SEL is estimated as [22,23]:    
 
      SEL = ǁsk∗ǁ/ǁskǁ             (4) 
  
The magnitude of spectral overlapping (%) is estimated as: 
100 × (1 - SEL). Detection limit DL is often estimated using 
different NAS approaches, however, the most practical one 
is derived from the classical univariate calibration [16]: 
 
      DL = 3||ε||/||sk∗||             (5) 
 
where ||ε|| is a quantity of the instrumental noise [23]. 
Calculation of quantification limit QL was carried out using 
the above equation but using factor 10 instead of 3 [25].   

 
 
Wavelength Selection by NASRP 
      In this procedure, wavelengths selection was carried out 
by assessing the error indicator EI (as a function of a 
moving window) for the new samples, which is based on the 
NAS regression plot NASRP [13,26,27]. NASRP is a plot 
derived from sample vector rk* and sk*. The strategy of 
moving window was performed by altering the position of 
the first variable and the variable range [13,27], EI is given 
as [26,28]:  
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where ║rk*║, sfit and N are the norm of the net analyte 
spectrum obtained for the unknown sample, the standard 
deviation of the best-fitted straight line to NASRP in the 
selected wavelength region, and the number of spectral data 
in NASRP. Both rk* and sk* were obtained from PLS model 
[26-28]. 
 
Variables Selection by iVISSA 
      The iVISSA is an iterative method with global and local 
search operations that alternately run to improve interval 
locations, widths, and combinations [10,25]. iVISSA is 
applied for selecting meaningful spectral intervals by 
generating two matrices known as binary matrix sampling 
BMS and weighted binary matrix sampling WBMS [10]. 
iVISSA can be used in either sample or variable 
dimensions, with the former being the more popular. 
Initially, a binary matrix M1 of dimension k×n is formed, 
containing either ‘0' or ‘1'. The number of sampling points 
is k, set to 4, and the number of spectral variables is n. Each 
column is allotted the same number of ‘1' and ‘0' (0.5k). 
Each column is permuted to produce M2, a new binary 
matrix. Each row of the new binary matrix M2 represents a 
random sampling technique, with “1” denoting the variable 
to be modelled while “0” denoting the variable to be 
removed from calibration. The values ‘0' and ‘1' in each 
column remain the same, guaranteeing that all variables in 
the sub-models have the same net frequency. WBMS 
modified BMS by allocating different weights (w) to distinct 
variables. According to the weights of the variables, various  
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numbers of “1” and “0” were assigned to each column in the 
binary matrix. After that, each column was permuted to 
generate a random set of variables. The values '0' and '1' in 
each column remain constant, guaranteeing that variables 
with higher weights have a greater chance of being selected 
into subgroups. iVISSA generated a tremendous number of 
intervals, and model population analysis MPA was used to 
pick the best intervals for calibration. MPA is a broad 
approach for developing new chemometrics algorithms. Due 
to the uncertainty of a single model, the basic notion of 
MPA is to extract information from a large population of 
sub-models rather than a single model. Using the subsets 
acquired by WBMS, a population of sub-models (e.g., 1000) 
is constructed in this study. The best sub-models with the 
lowest root-mean-square error of cross-validation 
(RMSECV) are then extracted, and each variable's 
frequency is counted [10,25]. 
 
EXPERIMENTAL METHODOLOGIES 
 
Apparatus 
      Using a double beam spectrophotometer (Thermo 
scientific. Genesys 10S UV-VIS, USA), UV spectra were 
measured using a 1.0 cm quartz cell. The spectra were 
obtained in Excel format for running numerical calculations. 
PLS-1 calibration and all NAS calculations were carried out 
using MVC1® program [29]. The MATLAB codes for 
iVISSA are available in the literature [10]. MVC1 and 
iVISSA were performed using MATLAB 7.0 (MathWorks 
Inc. USA) and run on a Pentium VI personal computer with 
Windows XP operating system. 
 
Reagents 
      The experiments were carried out using high-quality 
reagents and chemicals. Standard solutions (500 mg l-1) of 
PAR, GUS and PHE were prepared by dissolving 0.50 g of 
the drug in distilled water and diluted to 1.0 Litre. Dilute 
solutions were then prepared from the standards using 
distilled water after adjusting pH by 0.1 M NaOH or 0.1 M 
HCl, and the pH was rechecked and adjusted after dilution.  
 
Effect of Solution pH on UV Absorption: NAS 
Calculations 
      The UV spectrum was recorded at pH 6.0, 9.0,  and 12.0 

 
 
at 10 mg l-1 for each solute. Multivariate selectivity, 
multivariate sensitivity and spectral overlap were measured 
for each solute at each pH using NAS methodology (Eqs. 
(3) and (4)). As will be shown later, the optimum pH for 
analysis was 12.0. Accordingly, the solutions of calibration, 
validation, and formulation samples were prepared at pH 
12.0.      
 
Calibration, Validation, and Commercial Solutions 
      A training set of 12 mixtures of variable proportions of 
PAR-GUS-PHE were prepared for calibration (Table 1). A 
three-level full factorial design was created to build the 
calibration set with the concentrations of each solute lying 
within the linear absorbance-concentration range. Several 
synthetic samples were prepared containing different 
proportions of PAR-GUS-PHE taking into account their 
variability in the actual formulation (250:100:5). As claimed 
by the manufacturer, the added excipients were starch 
potassium  sorbate,  talc,  and  stearic  acid.  Among  added 
 
 
 Table 1. Calibration and Validation Mixtures (mg l-1) Used  
                for iVISSA-PLS Regression 
 

Calibration  PAR GUA PHE 
C1 5.0 8.0 10.0 
C2 2.0 12.0 18.0 
C3 9.0 12.0 10.0 
C4 9.0 8.0 18.0 
C5 5.0 12.0 4.0 
C6 9.0 4.0 4.0 
C7 2.0 4.0 10.0 
C8 2.0 8.0 4.0 
C9 5.0 12.0 18.0 
C10 2.0 4.0 4.0 
C11 5.0 9.0 10.0 
C12 9.0 12.0 18.0 
Validation  PAR GUA PHE 
V1 3.0 7.0 15.0 
V2 8.0 5.0 4.0 
V3 3.0 11.0 4.0 
V4 3.0 11.0 13.0 
V5 8.0 11.0 3.0 
V6 50.0 25.0 1.0 
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excipients, potassium sorbate and stearic acid were the most 
soluble in water and would affect UV spectra of drugs. 
Accordingly, calibration and validation solutions were 
prepared in a 5% mixture of potassium sorbate and stearic 
acid so that the analytical signal can account for the added 
excipients. 
       As indicated in Table 1, the concentrations of V1-V5 
solutions were within ranges selected in the calibration set, 
while V6 was prepared in relative amounts identical to      
those present in commercial formulation. The commercial 
formulation was obtained from a local pharmacy (Panadol® 
COLD+FLU ALLINONE, SmithKline Beecham, Spain). It 
was prepared as follows: Ten capsules were ground, and a 
portion equivalent to the mass of one capsule was treated 
with 50 ml distilled water, sonicated for 15 min and 
centrifuged. The supernatant was appropriately diluted, the 
final pH was adjusted to 12.0, and scanned over 200-300 nm 
with 1.0 nm step (i.e., 101 variables/sample). The contents 
of PAR-GUA-PHE were determined using PLS after 
variables selection by NAS or iVISSA.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
RESULTS AND DISCUSSION 
 
Effect of Solution pH on the Spectral Behaviour of 
Pharmaceuticals: NAS Calculations 
      Solution pH strongly influences the spectra of 
pharmaceuticals, which affect sensitivity SEN, selectivity 
SEL, and spectral overlapping. Hence, multivariate 
SEN/SEL and spectral overlapping of PAR, GUA, and PHE 
were estimated at pH 6.0, 9.0, and 12.0 using NAS 
calculations (Eqs. (3) and (4)). The UV spectra of 
pharmaceuticals at different pHs are provided in Fig. 1, 
while NAS calculations are provided in Table 2.            
      In fact, pKa values of examined drugs are 9.1, 9.4, and 
13.6 PHE, PAR, and GUA. To investigate the influence of 
pH on spectra of drugs, different pHs were selected to cover 
pKa of solutes except for GUA which has an extremely high 
acidity constant. As shown in Fig. 1, the UV spectra of 
pharmaceuticals were sensitive to pH but with different 
magnitudes.  For PAR, better light absorption was observed 
at pH 6.0 and over the range  (230-250 nm)  as  indicated in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                

     
Fig. 1. UV spectra of pharmaceuticals (10.0 mg l-1) measured at different pH values (A-C) and spectra of solutes at 

                pH 12.0 (D). 
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Fig. 1A. A significant bathochromic peak shift was reported 
at pH 12.0, and the solute has high absorption at 255 nm 
which is attributed to solute ionization (solution pH > pKa).  
      Among tested pharmaceuticals, GUA spectra were also 
insensitive to pH over the range (250-285 nm) as shown in 
Fig. 1B. However, a strong hyperchromic effect was 
observed at wavelength <240 nm and pH 6.0 which could 
be attributed to solute protonation (solution pH << pKa). 
The most interesting case was reported for PHE, as many 
changes were observed in its spectrum (Fig. 2C). Although 
the spectrum recorded at pH 6.0 indicated a high light 
absorption at wavelength <240 nm, the spectrum at pH 12 .0 
indicated the creation of new peaks that appeared at 235 and 
290 nm which indicated the ionization of the solute 
(solution pH > pKa). The spectrum obtained at pH 9.0 was 
not practical as the solute does not show high absorption at 
wavelength > 230 nm. The spectra of the three drugs at pH 
12.0 are shown in Fig. 1D. As can be observed, significant 
light absorption of PAR with an intense overlap in their 
spectra  makes  univariate  calibration  ineffective  for drugs 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
quantification. For commercial formulation, direct or 
derivative spectrometry would be applicable for PAR and 
GUA quantification but not for PHE as it is available in a 
small proportion. Hence, PLS is frequently used to achieve 
the latter goal, and it has been extensively applied to the 
analysis of multicomponent pharmaceutical combinations 
with different proportions [26,27]. The performance of PLS 
calibration for PHE in the tablet would be questionable, 
taking the high level of excipients even after dilution. 
Furthermore, effective spectral selection can improve PLS 
calibration performance for ingredients of a small 
proportion [27]. To check the influence of pH on 
multivariate SEN and SEL of the drugs, NAS was applied to 
find the significant part of UV spectra needed for analytical 
measurement, as summarized in Table 2. 
      As indicated in Table 2, PAR has the best sensitivity 
(3.32-4.91) among drugs and over the tested pHs. The high 
multivariate SEN of PAR was expected due to its significant 
light absorption over the whole range (Fig. 1A). However, 
SEL of solutes was notably  affected  by pH. The best pH is  

                 Table 2. Multivariate Sensitivity and Selectivity Measured at D pH Values Using NAS Methodology 
  

PAR GUA PHE  
pH SEN SEL SO% SEN SEL SO% SEN SEL SO% 
6.0 4.91 0.35 65 1.01 0.08 92 1.02 0.09 91 
9.0 4.02 0.57 43 1.42 0.16 84 0.58 0.17 83 
12.0 3.32 0.43 57 1.61 0.27 73 1.58 0.23 77 

                                              SEN: Sensitivity                     SEL: Selectivity                SO: Spectral Overlapping 
 
 

 
Fig. 2. Selected spectral variables for drugs by iVISSA methodology. 
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the one that achieved the highest SEN/SEL and minimum 
overlapping.  For PAR, the optimum pH was 9.0 because 
high SEN and SEL (and lower overlapping) was reported at 
this pH. The high sensitivity at pH 6.0 (4.91) was not 
enough to run calibration as spectral overlapping was high 
(65%) at this pH. The same is true at pH 12.0 with spectral 
overlapping 57%. For GUA, the analysis revealed that the 
optimum pH was 12.0 but with significant spectral 
overlapping (73%). For PHE, the optimum pH was 12.0 but 
also with a serious overlapping with other pharmaceuticals. 
Despite the low spectral overlap of PAR at pH 9.0 
compared to 12.0, PLS calibration was carried out at pH 
12.0 considering the high sensitivity of this drug at all pHs. 
NAS methodology is often applied to estimate sensitivity 
and selectively of overlapping drug mixtures [22,30]. 
 
Variable Selection by NAS and iVISSA  
      PLS,    NAS-PLS,   and    iVISSA-PLS    were  tested  to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
quantify PAR-GUS-PHE in synthetic mixtures and this was 
necessary due to: a) assessing the extent of spectral 
overlapping on the calibration performance of the models in 
the absence of excipients that are available in commercial 
tablet, and b) comparing the selected variables generated by 
both methods taking into account their different 
mechanisms for variables extraction. In NAS, the variables 
are obtained from NASRP which gives one fixed-width 
interval [27,28]. However, iVISSA intelligently picks up all 
possible intervals considering locations, widths, and 
combinations that are optimized simultaneously [10,28]. 
Hence, iVISSA can give separate intervals, and this 
advantage is not available in the NAS methodology. On the 
other hand, variables selection by NAS is based on the net 
analyte signal of the solute, which would result in more 
accurate outputs when analyzing commercial tablets. The 
final PLS calibration results before and after variables 
selection are  provided  in  Table 3.  Moreover,  the  selected  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Table 3. Selection of Informative Spectral Variables by iVISSA and NAS Prior to PLS Calibration at pH 12.0 
 

PAR  
      Method Variables PLS factors REP% 
PLS 101  

200-300 nm 
3 3.3 

NAS/PLSa 30 
229-258 nm  EI  0.0012-0.0034 

2 5.5 

iVISSA-PLSb 5 
203, 206, 219, 221, 222 nm 

2 5.4 

 GUA 
PLS 101  

200-300 nm 
4 7.2 

NAS/PLS 31 
220-250 nm   EI  0.0011-0.0025 

3 4.7 

iVISSA/PLS 11 
200, 207, 219-220, 239-240, 241, 245-246, 254, 259 nm 

3 7.0 

 PHE 
PLS 101 

200-300 nm 
4 4.2 

NAS/PLS 25 
220-244 nm   EI 0.0010-0.0018 

3 3.8 

iVISSA/PLS 34 
200-207, 224-225, 232-246, 250-254, 263, 267-270, 275, 278-280  nm 

3 2.8 

  aThe selected variables were estimated from NASRP of  each  solute in each mixture (V1-V5). The  selected variables  
  was the same for each  solute in  the  tested  mixture  obviously  due to  absence  of  non-modelled compounds.  bThe 
  selected variables were estimated by iVISSA by simultaneously adjusting widths, locations, and combinations of the  
  variables that achieved the best prediction of calibrated solutes.    
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variables picked up by iVISSA and for each drug are 
provided in Fig. 2.               
      For PAR, including all variables (101) was necessary to 
give a high prediction with a REP of 3.3%. However, NAS-
PLS and iVISSA-PLS ended up with good predictions (REP 
5.4-5.5%) using fewer PLS variables (2 factors only). As 
shown in Fig. 1D, PAR has a high absorption over 240-      
280 nm, and the variables selected by NAS (229-258 nm) 
seem logical due to the reasonable closeness to the earlier 
spectral range. It should be mentioned that NAS 
methodology select variables based on the net analyte signal 
of the calibrated solute, which should be orthogonal with the 
other solutes. The four variables provided by iVISSA (203, 
206, 219, 221, and 222 nm) were unexpected as all drugs 
intensely absorb at these wavelengths (Fig. 1D). However, 
with only four variables, iVISSA-PLS ended up with 
comparable performance with NAS-PLS, which selected 30 
variables (229-258 nm) for PAR prediction. For GUA, the 
winner was NAS-PLS with a REP of 4.7% compared to 
7.2% for PLS and 7.0% for iVISSA-PLS. The high 
performance of NAS-PLS was notably back to the proper 
selection of the interval (220-250 nm, 31 variables) as this 
solute strongly absorbs in this region (Fig. 1D). However, 
with only 11 spectral variables (200, 207, 219-220, 239-240, 
241, 245-246, 254, 259 nm) iVISSA-PLS outperformed 
PLS with a REP% of 7.0. The interesting points regarding 
iVISSA are; a) selection of variables that all solutes 
significantly absorb (200 and 207 nm), b) unlike NAS, 
iVISSA picked up intervals that GUS strongly absorb 
including, 219-220 and 254 and 259 nm, and c) selection of 
241, 245-246 nm by iVISSA was unpredicted due to the 
intense absorption of PAR in these regions (Fig 1D). The 
results of PHE indicated the effectiveness of iVISSA as 
variable selectors. iVISSA-PLS outperformed PLS and 
NAS-PLS for PHE prediction with REP down to 2.8%.  
      The high performance of iVISSA-PLS was attributed to 
the proper selection of the variables, especially 224-225, 
232-246, 250-254, 267-270, 275, and 278-280 nm, where 
the drug notably absorb, as seen in Fig 1D. As was the case 
for PAR and GUS, the interval 200-207 nm was not 
expected as all solute strongly absorb in this region. The 
lower performance of NAS-PLS compared to iVISSA-PLS 
would be attributed to the selection of one interval (220- 
244 nm)  only  while  excluding  the   region  (280-300  nm)  

 
 
where the solute strongly absorb (Fig. 1D). For better solute 
prediction in commercial formulation, quantification of 
PAR, GUA, and PHE should be carried out by PLS, NAS-
PLS, and iVISSA-PLS, respectively. However, using 
iVISSA-PLS is practical considering the low proportion of 
PHE in the commercial tablet. Both detection and 
quantification limits were estimated by NAS calculations 
(Eq. (5)) and at pH 12.0. Based on NAS calculations at pH 
12.0, the drugs were detected down to 0.12 mg l-1 for PAR 
and 0.24 mg l-1 for GUA/PHE, while quantification limits 
were 0.40 and 0.79 mg l-1 for PAR and GUA/PHE, 
respectively. 
 
Quantification of Pharmaceuticals in Commercial 
Tablet 
      As indicated earlier, NAS was efficient for selecting 
spectral range for GUA prediction and iVISSA was efficient 
for selecting a spectral intervals for PHE prediction. For the 
most sensitive drug (PAR), the best prediction was achieved 
using the whole spectrum. Hence, the performance of the 
methods was further checked to quantify drugs in the V6 
mixture (Table 1) that contain the same proportion of the 
pharmaceuticals in the tablet. The results are provided in 
Table 4, along with the commercial tablet.                 
      As for the synthetic solution, where there is very little 
PHE content compared to PAR and GUA, the drug has been 
determined with an accuracy of 106.9%. Determination of 
PHE with high accuracy is due to the proper selection of 
spectral intervals, as summarised in Table 3. PAR and GUA 
were quantified with high accuracy (98.6-102.5%), although 
their concentrations in the synthetic solution were outside 
the range used in the calibration stage (Table 1). For GUA, 
the selected interval was (220-250 nm, EI 0.0023), which 
was the same range reported for this drug in other validation 
solutions (V1-V5, Table 1). Dilution of the tablet solution 
was essential due to the high concentration of both 
PAR/GUA compared to PHE. The spectra of tablet solution 
were measured after dilution with water to different 
magnitudes and adjustment pH at 12.0, as shown in Fig. 3.  
      Initial analysis indicated that the spectrum recorded at 
1:10 dilution was convenient for pharmaceuticals 
prediction. The spectra recorded at 1:3 and 1:5 dilutions 
were excluded due to the high interferences of excipients 
available   in  the  tablet  (Fig. 3).  As  indicated  in  Table 4,  
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Fig. 3. UV spectra of the commercial tablet at different  

                dilutions at pH 12.0. 
 
 
active ingredients were assayed in the tablet with high 
recovery (98.4-104.3%) and precision (RSD 0.5-3.9). 
Unlike iVISSA, the NAS method can search the optimum 
spectral   interval   for  any  new  sample.  Determination  of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PAR, GUA, and PHE by the independent chromatographic 
method was also included in Table 4. Both t and F tests 
were carried out to check if the results of both methods were 
statistically comparable as indicated in Table 4. In all cases, 
calculated t values were lower than tabulated ones, 
indicating no significant difference between both methods. 
Moreover, F-calculated values were also lower than tabulate 
one, which confirmed that both methods were of 
comparable precision (Table 4). The reported NASRP for 
GUA prediction in the tablet is provided in Fig. 4.        
      As shown in Fig. 4B, the best spectral interval for GUA 
was (225-239 nm, 15 variables) with EI of 0.0131. The 
selected region was different from the one selected for GUA 
prediction in synthetic mixtures (220-250 nm, Table 3). The 
presence of uncalibrated solutes in the tablet affected the 
function of NAS for the extraction of variables. Hence, 
NAS method will search for regions that contain the 
maximum    spectral   information   of   GUA.  iVISSA-PLS  

Table 4. Results Obtained by  Applying  PLS,  PLS-NAS,  and  PLS-iVISSA  Analysis  to  both  Synthetic  and  Real  Ternary  
               Mixtures of Pharmaceuticals (RSD, n = 4)  

 
System Drug Added Predicted Interval Predicted Recovery 

(%) 
PAR 50.0 PLS 200-300 nm, 

101 variables 
50.3(±1.4) 102.5 

GUA 25.0 NAS-PLS 220-250 nm, 
31 variables  EI 0.0023 

24.7(±2.3) 98.6 

 
Synthetic solutionb 

PHE 1.0 iVISSA-PLS 202-207, 229-236, 250-
254, 268-275 nm, 

27 variables 

1.1(±4.3) 106.9 

PAR 257.6(±4.3)d PLS 200-300 nm, 
101 variables 

247.8(±6.5) 
te = 1.65  Fe = 3.23 

99.7 

GUA 103.4(±5.4)d NAS-PLS 225-239 nm, 
15 variables  EI 0.0131 

98.5(±7.9) 
t = 2.23  F = 3.67 

98.4 

Panadol® 
COLD+FLU 
(ALLINONE)c 

 
 PAR    250 mg 
  GUA   100 mg 
  PHE    5 mg 

PHE 5.4(±5.1)d iVISSA-PLS 202-207, 229-236, 250-
254, 268-275 nm, 

27 variables 

5.7(±8.2) 
t = 2.04  F = 4.67 

104.3 

aThe provided concentrations represent the mean of four identical measurements per sample (n = 4, ± relative standard 
deviation). bDirectly prepared from the standard solutions (low level of PHE) and measured at pH 12.0. cThe tablet solution 
was prepared by grinding 10 capsules and dissolving an equivalent mass of one capsule in 1.0 litre water. The spectra were 
measured by spectrometer after dilution 1:10 with water and at pH 12.0. dConcentration of active ingredients were 
independently measured by liquid chromatography as outlined in the literature [17]. et and F values were estimated from the 
results of the proposed multivariate method and standard HPLC. Tabulated t (0.05, 6) and F values (0.05, 3, 3) are 2.45 and 
15.44, respectively.  
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Fig. 4. (A) NASRP for GUA  in  commercial sample  using  
            the full wavelength range 200-300 nm. (B) NASRP  
           in the  range  225-239 nm,  as  predicted  from  the  
           analysis of the  EI parameter. The solid line  is the  

              best linear fit to the calculated points. 
 

 
managed to quantify PHE in commercial tablets with high 
accuracy by selecting the intervals (200-207, 224-225, 232-
246, 250-254, 263, 267-270, 275, 278-280 nm) where the 
solute efficiently absorb.             
 
CONCLUSIONS 
 
      Interval variable selection approaches such as iVISSA 
and NAS have been effective to handle spectral overlapping 
while selecting the informative intervals for the best PLS 
calibration. NAS calculation was practical to determine     
the   optimum   pH   needed   to   analyze   the   mixture   of 

 
 
pharmaceuticals. The pharmaceutical combination (PAR-
GUA-PHE) showed high spectral overlapping (57-77%) at 
pH 12.0, and variables selection by NAS & iVISSA was 
found useful to get high PLS prediction. For PAR, the entire 
range (200-300 nm, 101 spectral points) was necessary to be 
included. However, NAS calculations revealed that GUA 
could be predicted over the interval (220-250 nm) with high 
accuracy. For PHE, iVISSA outperformed NAS method for 
picking up the informative variables needed for PLS 
calibration. The selected variables for PHE were 200-207, 
224-225, 232-246, 250-254, 263, 267-270, 275, 278-280 
nm. The ternary drug system was quantified in commercial 
tablet with high accuracy (99.7-104.3%) and precision 
(RSD 0.5-3.9) using full-spectrum PLS calibration (for 
PAR), NAS-PLS (for GUA), and iVISSA-PLS (for PHE).                     
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LIST OF ABBREVIATIONS 
 
DL   Detection limit  
EI    Error indicator  
iVISSA   Interval Variable Iterative Space 
Shrinkage Approach 
Guaifenesin                  GUA                  
Paracetamol     PAR           
PLS    Partial Least Squares  
NAS    Net Analyte Signal 
NASRP   Net Analyte Signal Regression Plot 
Phenylephrine     PHE 
Selectivity   SEL 
Sensitivity   SEN 
QL    Quantification limit 
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