Tutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros

Document Type: Review

Authors

1 Department of Analytical Chemistrty, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctive feeling for how oscillating reactions work will be invaluable to future generations of chemists. Some software programs have been released for simulating oscillating systems; however, the algorithm details of such software are not transparent to chemists. In contrast, function of spreadsheet tools, like Microsoft Excel, is well understood, and the software is nearly universally available. In this work, the simulation and visualization of different oscillating systems are performed using Microsoft excel. The simple repetitive solving of the ordinary differential equation of an autocatalytic reaction (a spreadsheet row) followed by time, easily automated by a subroutine (a “Macro” in Excel), readily simulates an oscillating reaction. This permits the simulation of some oscillating systems such asBelousov-Zhabotinsky. The versatility of an easily understandable computational platform further enables the simulation of the effects of linear and nonlinear parameters such as concentrations of reactants and catalyst, and kinetic constants. These parameters are readily changed to examine their effects.

Keywords


Appendix 1         Appendix 2          Appendix 3        Appendix 4     Appendix 5

Appendix 6         Appendix 7          Appendix 8

 

 

[1]        P. A. Nogueira, H. Varela and R. B. Faria, Chem. Phys. Lett.,  530 (2012) 137.

[2]        C. Bagyinka, G. Pankotai-Bodó, R. M. M. Branca, M. Debreczeny, Int.l J. Hydrogen Energy 39 (2014), 18551.

[3]        N. A. Peppas, R. M. Ottenbrite, K.Park, T. Okano, Biomedical Applications of Hydrogels Handbook, Springer, London, 2010.

[4]        Y. Hara, R. Yoshida, J. Phys. Chem. B  109 (2005) 9451.

[5]        Y. Hara, R. Yoshida, Langmuir  21 (2005)  9773.

[6]        R. Yoshida, T. Yamaguchi, H. Ichijo, Mater. Sci.d Eng. C4 (1996), 107.

[7]        R. Yoshida, T. Sakai, Y. Hara, S. Maeda, S. Hashimoto, D. Suzuki, Y. Murase, J.Control. Release 140 (2009) 186.

[8]        I. R. Epstein, J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics;Oscillation, Waves, Patterns and Chaos, Oxford University Press, USA, 1998.

[9]        R. d. Levie, How to Use Excel in Analytical Chemistry and in General Scientific

Data Analysis,, Cambridge University Press, Cambridge, 2004.

[10]      M. Iranifam, M. A. Segundo, J. L. M. Santos, J. L. F. C. Lima, M. H. Sorouraddin, Luminescence 25 (2010) 409.

[11]      M. Iranifam, Oscillating Reaction-Based Analytical Methods, LAP Lambert Academic Publishing, 2011.

[12]      M. H. Sorouraddin, M. Iranifam, Luminescence 23 (2008) 303.

[13]      J. Ren, J. Gao, W. Yang, Comput. Visual Sci. 12 (2009) 227.

[14]      M. Sharma, P. Kumar, Resonance 11 (2006) 43.

[15]      D. E. Zak, J. Stelling, F. J. Doyle Iii, Comput. Chem. Engin. 29 (2005) 663.

[16]      G. Harvey, Excel 2007 Workbook for Dummies, Wiley, London, 2nd edn., 2007.

[17]      R. D. Levie, Advanced Excel for Scientific Data Analysis, Amazon.com, Atlantic Academic LLC, 3th edn., 2012.

[18]      E. J. Billo, Excel for Chemists: A Comprehensive Guide, John Wiley & Sons, 3rd edn., 2011.

[19]      A. Kadjo and P. K. Dasgupta, Anal. Chim.Acta 773 (2013) 1.

[20]      R. Vilcu, D. Bala, Models of Oscillating chemical reactions. Particularities of some Proposed Models for the Characterization of Chemical Oscillations, Analele Universitanii din Bucuresti, Bucharest, 2004.

[21]      G. Puxty, M. Maeder,K. Hungerbühler, Chemometr. Intel.t Lab. Syst. 81 (2006) 149.

[22]      U. M. Ascher, L. R. Petzold, Society for Industrial and Applied Mathematics, 1997.

[23]      A. J. Lotka, J. Amer. Chem. Soc. 12 (1920) 1595.

[24]      P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuation, Wiley-Interscience, London, 1971.

[25]      R. M. Noyes, L. V. Kalachev, R. J. Field, J. Phys. Chem 99 (1995) 99, 3514.

[26]      R. J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems, Wiley-Interscience, New York, 1985.

[27]      P. Ruoff, E. W. Hansen, R. M. Noyes, J. Phys. Chem. 91 (1987) 33938.

[28]      R. M. Noyes, J. Chem. Educ. 66 (1989) 190.

[29]      R. M. Noyes, J. Phys. Chem. 94 (1990) 4404.

[30]      R. J. Field, R. M. Noyes, J. Chem. Phys. 60 (1974) 1877.

[31]      D. C. Harris, J. Chem.Educ. 75 (1998) 119.