Electrochemical Sensor for Determination of Ascorbic Acid Using a 2-Chlorobenzoyl Ferrocene/Carbon Nanotube Paste Electrode

Document Type : Research Paper

Authors

1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 aEnvironment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

3 Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Abstract

A chemically modified carbon paste electrode with 2-chlorobenzoyl ferrocene (2CBF) and carbon nanotube (2CBFCNPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, square wave voltammetry and chronoamperometry. The diffusion coefficient (D = 1.42 × 10-6 cm2 s-1), and the kinetic parameter such as the catalytic rate constant (k = 3.7 × 10 3 M-1 s-1) of ascorbic acid oxidation at the surface of 2CBFCNPE were determined using electrochemical approaches. It has been found that under an optimum condition (pH 4.0), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 85 mV less positive than that of an unmodified carbon paste electrode. Applying square wave voltammetry, in phosphate buffer solution (PBS) of pH 4.0, the oxidation current increases linearly with two concentration intervals of ascorbic acid, one is 1.0 × 10-7-2.5 × 10-6 M and the other is 2.5 × 10-6-7.0 × 10-5 M. Detection limit (3δ) was obtained 64.0 nM. This method was also examined for determination of ascorbic acid in some real samples.

Keywords


REFERENCES
[1] T. Kleszczewski, E. Kleszczewska, J. Pharm. Biomed. Anal. 29 (2002) 755.
[2] H. Beitollahi, S. Mohammadi, Chin. J. Catal. 34 (2013) 1098.
[3] R. Aguilar, M.M. Davila, M.P. Elizalde, J. Mattusch, R. Wennrich, Electrochim. Acta 49 (2004) 851.
[4] B. Tsvetkova, I. Pencheva, A. Zlatkov, P. Peikov, Afr. J. Pharm. Pharmacol. 6 (2012) 1332.
[5] H. Beitollahi, S. Tajik, H. Parvan, H. Soltani, A. Akbari, M.H. Asadi, Anal. Bioanal. Electrochem. 6 (2014) 54.
[6] A. Sarakbi, Z. Aydogmus, T. Sidali, G. Gokce, J. Kauffamann, Electroanalysis 23 (2011) 29.
[7] P. Ramesh, S. Sampath, Electroanalysis 16 (2004) 866.
[8] M.G. Gioia, P. Andreatta, S. Boschetti, R. Gatti, J. Pharm. Biomed. Anal. 48 (2008) 331.
[9] C. Akay, B. Gumusel, T. Degim, S. Tartilmis, S. Cevheroglu, Drug Metabol. Drug Interact. 15 (1999) 197.
[10] R. Thomis, E. Roets, J. Hoogmartens, J. Pharm. Sci. 73 (1984) 1830.
[11] C. Varodi, O. Axuc, S. Ciorceri, D. Gligor, I.C. Popescu, L.M. Muresan, Rev. Roum. Chim. 55 (2010) 859.
[12] H.N. Dogan, A. Duran, Pharmazie 53 (1998) 781.
[13] R. Sandulescu, S. Mirel, R. Oprean, J. Pharm. Biomed. Anal. 23 (2000) 77.
[14] K.H. Ahmad Ali Fernandes, J.P.T. da Silva Santos, V. Del Colle, J. Souza‑Garcia, C.A.. Angelucci, Quim. Nova 38 (2015) 431.
[15] H. Beitollahi, J.B. Raoof, R. Hosseinzadeh, Talanta 85 (2011) 2128.
[16] J. Souza-Garcia, C.A. Angelucci, Quim. Nova 38 (2015) 669.
[17] Z. Gao, K.S. Siow, A. Ng, Y. Zhang, Anal. Chim. Acta 343 (1997) 49.
[18] L.J. Dalla Costa, E.C. Pereira, Quim. Nova 38 (2015) 723.
[19] A. Mohadesi, H. Beitollahi, Anal. Methods. 3 (2011) 2562.
[20] M. Siswana, K.I. Ozoemena, T. Nyokong, Sensors 8 (2008) 5096.
[21] S. Tajik, M.A. Taher, H. Beitollahi, Ionics 20 (2014) 1155.
[22] M. Ahmadipour, M.A. Taher, H. Beitollahi, R. Hosseinzadeh, Chin. Chem. Lett. 23 (2012) 981.
[23] C.B. Jacobs, M.J. Peairs, B.J. Venton, Anal. Chim. Acta 662 (2010) 105.
[24] M.I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, L.S. Lussier, Appl. Surf. Sci. 257 (2011) 6843.
[25] H. Beitollahi, I. Sheikhshoaie, Anal. Methods 3 (2011) 1810.
[26] V.M. De Menezes, A.R. Rocha, I. Zanella, R. Mota, A. Fazzio, S.B. Fagan, Chem. Phys. Lett. 506 (2011) 233.
[27] P.R. Dalmasso, M.L. Pedano, G.A. Rivas, Sens. Actuators B 173 (2012) 732.
[28] N. Havens, P. Trihn, D. Kim, M. Luna, A.K. Wanekaya, A. Mugweru, Electrochim. Acta 55 (2010) 2186.
[29] P. Juan, G. Zuo-Ning, Anal. Bioanal. Chem. 384 (2006) 1525.
[30] A.P. Dos Reis, C.R.T. Tarley, L.D. Mello, L.T.;Kubota, Anal. Sci. 24 (2008) 1569.
[31] H. Beitollahi, I. Sheikhshoaie, J. Electroanal. Chem. 661 (2011) 336.
[32] R. Jain, J.A. Rather, Colloids Surf. B 83 (2011) 340.
[33] A. Mohadesi, H. Beitollahi, M.A. Karimi, Chin. Chem. Lett. 22 (2011) 1469.
[34] C. Li, Colloids Surf. B 55 (2007) 77.
[35] X.G. Wang, Q.S. Wu, W.Z. Liu, Y.P. Ding, Electrochim. Acta 52 (2006) 589.
[36] H. Beitollahi, M. Hamzavi, M. Torkzadeh-Mahani, Mater. Sci. Engin. C 52 (2015) 297.
[37] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second ed. Wiley, New York, 2001.
[38] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.