Sensitive Electrochemical Determination of Gallic Acid: Application in Estimation of Total Polyphenols in Plant Samples

Document Type: Research Paper

Author

Shahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, I.R. Iran

Abstract

A modified electrode was prepared by modification of the carbon paste electrode (CPE) with graphene nano-sheets. The fabricated modified electrode exhibited an electrocatalytic activity toward gallic acid (GA) oxidation because of good conductivity, low electron transfer resistance and catalytic effect. The graphene modified CPE had a lower overvoltage and enhanced electrical current respect to the bare CPE for the oxidation of GA. The oxidation potential of GA decreased more than 210 mV by the modified electrode. The modified electrode responded to the GA in the concentration range of 3.0 × 10-5-1.5 × 10-4 M with high sensitivity by the technique of differential pulse voltammetry. Also, detection limit of 1.1 × 10-7 M was obtained by this modified electrode for GA. This electrode was used for the successful determination of GA in plant samples. Therefore, the content of total polyphenols in plant samples can be determined by the proposed modified electrode based on the concentration of GA in the sample.

Keywords


REFERENCES

 

[1] D. Bagchi, M. Bagchi, S.J. Stohs, D.K. Das, S.D. Ray, C.A. Kuszynski, S.S. Joshi, H.G. Pruess, Toxicology 148 (2000) 187.

[2] I. Urquiaga, F. Leighton, Biol. Res. 33 (2000) 55.

[3] H. Tanizawa, S. Toda, Y. Sazuka, T. Taniyama, T. Hayashi, S. Arichi, Y. Takino, Chem. Pharm. Bull. 32 (1984) 2011.

[4] B.L. Zhao, X.J. Li, R.G. He, S.J. Cheng, W.J. Xin, Cell Biophys. 14 (1989) 175.

[5] X. Wang, J.N. Wang, Food Chem. 105 (2007) 340.

[6] F. Puoci, A. Scoma, G. Cirillo, L. Bertin, F. Fava, N. Picci, Biochem. Eng. J. 198–199 (2012) 529.

[7] H. Franquet-Griell, A. Checa, O. Núñez, J. Saurina, S. Hernández-Cassou, L. Puignou, J. Agric. Food Chem. 60 (2012) 8340.

[8] L. Jaitz, K. Siegl, R. Eder, G. Rak, L. Abranko, G. Koellnsperger, S. Hann, Food Chem. 122 (2010) 366.

[9] M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, M. Abdollahi-Alibeik, A. Benvidi, Analyst 137 (2012) 1950.

[10] M. Noroozifar, M. Khorasani Motlagh, R. Akbari, M. Bemanadi Parizi, Anal. Bioanal. Chem. Res. 1 (2014) 62.

[11] M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, B.F. Mirjalili, Electroanalysis 25 (2013) 2021.

[12] M. Tefera, S. Admassie, M. Tessema, S. Mehretie, Anal. Bioanal. Chem. Res. 2 (2015) 139.

[13] F. Gholamian, M.A. Sheikh-Mohseni, H. Naeimi, Mater. Sci. Eng. C 32 (2012) 2344.

[14] A. Afkhami, A. Bahiraei, T. Madrakian, Mater. Sci. Eng. C 59 (2016) 168.

[15] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906.

[16] A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Rev. 14 (2014) 7150.

[17] M. Mazloum-Ardakani, A. Khoshroo, L. Hosseinzadeh, Sens. Actuator B Chem. 204 (2014) 282.

[18] A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian. Sens. Actuator B Chem. 203 (2014) 909.

[19] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, Wiley, New York, 2001.

[20] M. Mazloum-Ardakani, A. Khoshroo, L. Hosseinzadeh, Sens. Actuator B Chem. 214 (2015) 132.

[21] S. George, P. Brat, P. Alter, M.J. Amiot, J. Agric. Food Chem. 53 (2005) 1370.

[22] F. Gao, D. Zheng, H. Tanaka, F. Zhan, X. Yuan, F. Gao, Q. Wang, Mater. Sci. Eng. C 57 (2015) 279.

[23] C. Lanzellotto, G. Favero, M. L. Antonelli, C. Tortolini, S. Cannistraro, E. Coppari, F. Mazzei, Biosens. Bioelectron. 55 (2014) 430.

[24] S. M. Ghoreishi, M. Behpour, M. Khayatkashani, M. H. Motaghedifard, Anal. Methods 3 (2011) 636–645.

[25] V. Carralero Sanz, M. Luz Mena, A. Gonzalez-Cortes, P. Yanez-Sedeno, J. M. Pingarron, Anal. Chim. Acta, 528 (2005) 1.

[26] R. A. Hamid, E. F. Newair, J. Electroanal. Chem. 704 (2013) 32.