Air-assisted Liquid Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry for Preconcentration and Determination of Trace Amount of Co(II) and Ni(II) Ions in Water Samples

Document Type: Research Paper

Authors

Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of cobalt (II) and nickel (II) ions in water samples by air-assisted liquid-liquid microextraction (AALLME) coupled with graphite furnace atomic absorption spectrometry (GFAAS). In the proposed method, much less volume of an organic solvent was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables that could affect the extraction efficiency were investigated and optimized. Calibration graphs were linear in the range of 6.5-100 ng L-1. Detection limits for Co and Ni were 2.3 ng L-1 and 3 ng L-1, respectively. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method has been successfully applied for the determination of cobalt (II) and nickel (II) ions in tap, surface and river water samples.

Keywords


[1]       S. Baytak, A.R. Turker, Talanta 65 (2005) 938.

[2]       E.J. Underwood, Trace Elements in Human and Animal Nutrition, Academia, London, 1971.

[3]       P. Bratter, P. Schramel, Trace Elements in Analytical Chemistry, Medicine and Biology, New York, Walter de Gruyter, 1980.

[4]       D.L. Tsalev, Z.K. Zaprianov, Atomic Absorption in Occupational and Environmental Health Practice, Analytical Aspects and Health Significance, CRC Press., Boca Raton, FL, 1983, Vol. 11.

[5]       V.P. Kudesia, Water Pollution, Meerut, Pregati prakashan publications, 1990.

[6]       H.G. Seiler, A. Siegel, H. Siegel, Handbook on Metals in Clinical and Analytical Chemistry, New York, Marcel Dekker, 1994.

[7]       M. Gebrekidan, Z. Samuel, Mekelle University 3 (2011) 105.

[8]       M. Amjadi, A. Samadi, Colloid. Surface 434 (2013) 171.

[9]       C.L. Dunlap, S.K. Vincent, B.F. Barker, J. Am. Dent. Assoc. 118 (1989) 449.

[10]    A.L. Greppi, D.C. Smith, D.G. Woodside, Univ. Tor. Dent. J. 3 (1989) 11.

[11]    WHO 2008, Guidelines for drinking water quality, World Health Organization, Geneva.

[12]    J. Abulhassani, J.L. Manzoori, M. Amjadi, J. Hazard. Mater. 176 (2010) 481.

[13]    M.D. Bezerra, M.A.Z. Arruda, S.L.C. Ferreira, Appl. Spectrosc. Rev. 40 (2005) 269.

[14]    G.C. Gomez, A. Garcia de Torres, J.M. Cano-Pavon, C. Bosch Ojeda, Anal. Lett. 28 (1995) 1181.

[15]    H. Sato, J. Ueda, Anal. Sci. 17 (2001) 461.

[16]    J. Chen, K.C. Teo, Anal. Chim. Acta 434 (2001) 325.

[17]    J.L. Manzoori, A. Bavili-Tabrizi, Microchim. Acta 141 (2003) 201.

[18]    M. Pesavento, R. Biesuz, G. Alberti, M. Sturini, J. Sep. Sci. 26 (2003) 381.

[19]    A.N. Anthemidis, G. Giakisikli, G.A. Zachariadis, Anal. Methods 3 (2011) 2108.

[20]    E. Kenduzler, A. Rehber Turker, J. Sep. Sci. 28 (2005) 2344.

[21]    A. Sarafraz-Yazdi, A. Amiri, Trends Anal. Chem. 29 (2010) 1.

[22]    M.A. Farajzadeh, S.M. Sorouraddin, M.R. Afshar Mogaddam, Microchim. Acta 181 (2014) 829.

[23]    X. Wen, Q. Deng, J. Guo, Spectrochim. Acta A 79 (2011) 1941.

[24]    C.J. Zeng, X.D. Wen, Z.Q. Tan, P.Y. Cai, X.D. Hou, Microchem. J. 96 (2010) 238.

[25]    Y. Zhang, J. Duan, M. He, B. Chen, B. Hu, Talanta 115 (2013) 730.

[26]    Q. Zhou, M. Lei, J. Li, M. Wang, D. Zhao, A. Xing, K. Zhao, J. Sep. Sci. 38 (2015)  1577.

[27]    M.A. Farajzadeh, M. Bahram, M.R. Vardast, J. Sep. Sci. 32 (2009) 4200.

 [28]    M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116 (2006) 1.

[29]    C.B. Ojeda, F.S. Rojas, Chromatographia 69 (2009) 1149.

[30]    M. Rezaee, Y. Yamini, M. Faraji, J. Chromatogr. A 1217 (2010) 2342.

[31]    E.Z. Jahromi, A. Bidari, Y. Assadi, M.R.M. Hosseini, M.R. Jamali, Anal. Chim. Acta 585 (2007) 305.

[32]    P.X. Baliza, L.S.G. Teixeira, V.A. Lemos, Microchem. J. 93 (2009) 220.

[33]    H. Sereshti, V. Khojeh, S. Samadi, Talanta 83 (2011) 885.

[34]    M.A. Farajzadeh, M.R. Afshar Mogaddam, Anal. Chim. Acta 728 (2012) 31.

[35]    Y. Yamini, M. Rezaee, A. Khanchi, M. Faraj, A. Saleh, J. Chromatogr. A 1217 (2010) 2358.

[36]    S. Jafarvand, F. Shemirani, Microchim. Acta 173 (2011) 353.

[37]    M. Rajabi, S. Asemipour, B. Barfi, M.R. Jamali, M. Behzad, J. Mol. Liq. 194 (2014) 166.

[38]    V.A. Lemos, L.N. Santos, M.A. Bezerra, J. Food Compos. Anal. 23 (2010) 277.

[39]    H. Jiang, Y. Qin, B. Hu, Talanta 74 (2008) 1160.

[40]    M.S. Luz, A.N. Nascimento, P.V. Oliveira, Talanta 115 (2013) 409.

[41]    P.X. Baliza, L.S.G. Teixeira, V.A. Lemos, Microchem. J. 93 (2009) 220.

[42]    M. Karimi, H. Sereshti, V. Khojeh, S. Samadi, Intern. J. Environ. Anal. Chem. 93 (2013) 401.

[43]    V.A. Lemos, V.J. Ferreira, J.A. Barreto, L.A. Meira, Water Air Soil Pollut. 226 (2015) 141.