Central Composite Design for the Optimization of Hydrogel Based pH-Dependent Extraction and Spectrophotometric Determination of Mercury

Document Type: Research Paper

Authors

1 Department of Chemistry, faculty of Science, Urmia University, Urmia, Iran

2 Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran

Abstract

In the present work a pH-dependent cloud point extraction procedure using pH-sensitive hydrogel polymer was applied for preconcentration and spectrophotometric determination of the Hg(II) as its Thio micher's ketone complex. Central composite design (CCD) and response surface method were applied to design the experiments and find out the optimum conditions. Four factors entitled concentration of hydrogel, HCl, TMK and KCl (to study the salting out effect) were investigated. At the optimum conditions, the analytical characteristics of the method (e.g., limit of detection, linear range, Relative standard deviation) were obtained. Linearity was obeyed in the range of 5-200 ng ml-1 of Hg(II) with a correlation coefficient of 0.987. The detection limit of the method was 1 ng ml-1 for Hg(II) ion. Relative standard deviation (RSD) for 7 replicate determinations of complex mercury with Thio micher's ketone was 3.37%. The interference effect of some anions and cations was also investigated.  

Keywords


[1]A. Niazi, T. Momeni-Isfahani, Z. Ahmari, J. Hazard. Mater. 165 (2009) 1200.

[2]  Y. Wang, F. Yang, X. Yang, Biosens. Bioelectron. 25 (2010) 1994.

[3]  C. Huang, B. Hu, Spectrochim, Acta Part B 63 (2008) 437.

[4]  M. Baghdadi, F. Shemirani, Anal. Chim. Acta 613 (2008) 56.

[5]N. Pourreza, K. Ghanemi, J. Hazard. Mater. 161 (2009) 982.

[6]M. Tuzen, M. Soylak, Bull. Environ. Contam. Toxicol. 74 (2005) 968.

[7] J. Fan, Y. Qin, C. Ye, P. Peng, C. Wu, J. Hazard. Mater. 150 (2008) 343.

[8] M. Tuzen, M. Soylak, Bull. Environ. Contam. Toxicol. 74 (2005) 968.

[9] J. Chen, H. Chen, X. Jin, H. Chen, Talanta 77 (2009) 1381.

[10]  J.C.A. de Wuilloud, R.G. Wuilloud, M.F. Silva, R.A. Olsina, L.D. Martinez, Spectrochim.  Acta Part B 57 (2002) 365.

[11] K.L.  Cheng,  B.L. Goydish,  J. Microchem. 10 (1996) 158.

[12]   D.Fu, D.Yuan, Spectrochim.  Acta A, 66 (2007) 434.

[13] N. Ferrus, S. Cerutti, J.A. Salonia, L.D. Martinez, J. Hazard. Mater. 141 (2007)  693.

[14]  B.K. Priya, P. Subrahmanayam, K. Suvardhan, K.S. Kumar, D. Rekha, A.V. Rao, G.C.  Rao, P. Chiranjeevi, J. Hazard. Mater. 144 (2007) 152.

[15] M. Bahram, F. Keshvari, P. Najafi-Moghaddam, Talanta 85 (2011) 891.

[16]  P. Wu, Y.C. Zhang, Y. Lv, X.D. Hou, Spectrochim. Acta Part B 61 (2006)  1310.

[17]  T.D.A. Maranhao, D.L.G. Borges, M.A.M.S. da Veiga, Spectrochim. Acta Part B 60  (2005) 667.

[18] M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, A. Najibi, M. Soylak, J. Hazard.  Mater. 168 (2009) 1022.

 [19] T.I. Sikalos, E.K. Paleologos, Anal. Chem. 77 (2005) 2544.

[20] Y.J. Li, B. Hu, Z.C. Jiang, Anal. Chim. Acta 576 (2006) 207.

[21] G.L. Donati, K.E. Pharr, P.C. Calloway Jr., J.A. Nobrega, B.T. Jones, Talanta 76  (2008) 1252.

[22] X.D. Wen, P. Wu, L. Chen, X.D. Hou, Anal. Chim. Acta 650 (2009) 33.

[23] R.A. Gil, J.A. Gلsquez, R. Olsina, L.D. Martinez, S. Cerutti, Talanta 76 (2008)  669.

[24] J. Lopez-Darias, V. Pino, J.H. Ayala, V. Gonzalez, A.M. Afonso, Anal. Bioanal.  Chem. 391 (2008) 735.

[25] A.K. Bajpai, S.K. Shukla, S. Bhanu, S. Kankane, Progr. Polym. Sci. 33 (2008) 1088.

[26] S. Srivastava, R. Sinha, D. Roy, Aquat. Toxicol. 66 (2004) 319.

[27] A. Stammati, C. Nebbia, I.D. Angelis, A.G. Albo, M. Carltti, C. Rebecchi, F. Zampaglioni,  M. Dacasto, Toxicol. In Vitro 19 (2005) 853.

[28]  D.D. Stephan, J. Werner, R.P. Yeater, Essential regression and experimental design for chemists and engineers, MS Excel Add in Software Package  (1998–2001).

[29] I. Bulacov, J. Jirkovsky, M. Muller, R.B. Heimann, Surf. Coat. Technol. 201 (2006)  255.