Application of Charge Transfer Complexation Reaction for the Spectroscopy Determination of Anticonvulsant Drug Primidone

Document Type : Research Paper

Authors

Department of Chemistry, University of Guilan, Namjoo Street, Rasht, P.B. 41335-1914, Iran

Abstract

The interaction of the perimidone drug in solution state with the σ-acceptor iodine, the aliphatic π-acceptor tetracyanoethylene (TCNE) and the aromatic π-acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied through the initial formation of ionic intermediate to charge transfer (CT) complex in methanol at room temperature. The spectral studies of the complexes were determined by UV-Visible, Fourier transform infrared (FT-IR). The stoichiometries of the complexes were found to be 1:2 and 1:1 ratio by the photometric molar ratio between primidone with π-acceptors and σ-acceptor, respectively. The equilibrium constants (KCT), molar extinction coefficient (εCT) and spectroscopic-physical parameters (standard free energy (ΔGo), and ionization potential (Ip)) of the complexes were determined upon the modified Benesi–Hildebrand equation. The most stable mono-protonated form of perimidone is characterized by the formation of +N H (pyrimidine ring) intramolecular hydrogen bonded. In the high-wavenumber spectral region ∼3400 cm−1, the bands of the +N H stretching vibrations could be potentially useful to discriminate the investigated forms of perimidone.

Keywords


[1]       E.M. Kosower, Prog. Phys. Org. Chem. 3 (1965) 81http://refhub.elsevier.com/S0022-2860(14)00988-0/h0005.
[2]       F.P. Fla, J. Palou, R. Valero, C.D. Hall, P. Speers, JCS Perkin Trans. 2 (1991) 1925http://refhub.elsevier.com/ S0022-2860(14)00988-0/h0010.
[3]       T. Roy, K. Dutta, M.K. Nayek, A.K. Mukherjee, M. Banerjee, B.K. Seal, JCS Perkin Trans. 2 (2000) 531.
[4]       A. Mostafa, H.S. Bazzi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 74 (2009) 180.
[5]       A. Mostafa, H.S. Bazzi, J. Mol. Struct. 983 (2010) 126.
[6]       A. Mostafa, H.S. Bazzi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79 (2011) 1613.
[7]       H.S. Bazzi, A. Mostafa, S.Y. AlQaradawi, E.M. Nour, J. Mol. Struct. 842 (2007) 1.
[8]       H.S. Bazzi, S.Y. AlQaradawi, A. Mostafa, E.M. Nour, J. Mol. Struct. 879 (2008) 60.
[9]       S.Y. AlQaradawi, A. Mostafa, H.S. Bazzi, J. Mol. Struct. 1037 (2013) 209.
[10]    A. Mostafa, Nada El-Ghossein, S.Y. AlQaradawi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118 (2014) 1012.
[11]    D.K. Roy, A. Saha, A.K. Mukherjee, Spectrochim. Acta A 61 (2005) 2017.
[12]    S. Licht, Sol. Energy Mater. Sol. Cells 35 (1995) 305.
[13]    H. Tsubomura, R.P. Lang, J. Am. Chem. Soc. 83 (1961) 2085.
[14]    M.R. Trimble, New Anticonvulsants Advances in the Treatment of Epilepsy, Wiley, New York, 1994.
[15]    A.G. Marson, Z.A. Kadir, D.W. Chadwick, Br. Med. J. 313 (1996) 1167.
[16]    M.L. Brown, G.B. Brown, W.J. Brouillette, J. Med. Chem. 40 (1997) 602.
[17]    A.M. Pack, M.J. Morrell, CNS Drugs 15 (2001) 633.
[18]    H.A. Valsamis, S.K. Arora, B. Labban, S.I. McFarlane, J. Nutr. Metab. 3 (2006) 36.
[19]    M.G. Harrington, H.M. Hodkinson, J. Roy. Soc. Med 80 (1987) 425.
[21]    D.A. Skoog, Principle of Instrumental Analysis, third ed., Saunder College Publishing, New York, 1985 (Chapter 7); E.M. Nour, S.Y. AlQaradawi, A. Mostafa, E. Shams, H.S. Bazzi, J. Mole. Struct. 980 (2010) 218.
[22]    U.M. Rabie, M.H. Ab-El-wafa, R.A. Mohamed, J. Mol. Struct. 871 (2007) 6.
[23]    M. Pandeeswaran, K.P. Elango, Spectrochim. Acta A 72 (2009) 789.
[24]    M. Hasani, Alireza, Spectrochim. Acta A 65 (2006) 1093.
[25]    E.M. Nour, L.A. Shahada, S.A. Sadeek, S.M. Teleb, Spectrochim. Acta A 51 (1995) 471.
[26]    M. Pandeeswaran, K.P. Elango, Spectrochim. Acta A 69 (2008) 1082.
[27]    R.V. Ball, G.M. Eckert, F. Gutmann, D.K.Y. Wong, Electroanalysis 8 (1996) 66.
[28]    H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
[29]    A. El-Kourashy, Spectrochim. Acta A 37 (1981) 399.
[30]    M. Arslan, H. Duymus, Spectrochim. Acta A 67 (2007) 573.
[31]    A.A.A. Boraei, Spectrochim. Acta A 58 (2002) 1895.
[32]    G. Briegleb, Z. Angew. Chem. 72 (1960) 401.
[33]    G. Briegleb, Z. Angew. Chem. 76 (1964) 326.
[34]    S. Moamen, Refat, M. Akram, El-Didamony, Ivo Grabchev, Spectrochim. Acta A 67 (2007) 58.
[35]    K.P. Pandeeswaran, Elango, Spectrochim. Acta A 65 (2006) 1148.
[36]    R. Rathone, S.V. Lindeman, J.K. Kochi, J. Am. Chem. Soc. 119 (1997) 9393.
[37]    G. Briegleb, J. Czekalla, Angew. Chem. 72 (1960) 401.
[38]    G. Briegleb, Angew. Chem. 76 (1964) 326.
[39]    G.A. Geffrey, W. Saenger, Hydrogen Bonding in Biological Structures, 2nd ed., Springer-Verlag, Berlin Heidelberg, New York, 1994.