Electrocatalytic Determination of Glutathione Using Transition Metal Hexacyanoferrates (MHCFs) of Copper and Cobalt Electrode Posited on Graphene Oxide Nanosheets

Document Type: Research Paper

Authors

1 Department of Chemistry, Razi University, Kermanshah, Iran

2 Department of Chemistry, Razi University, Kermanshah-Iran

Abstract

A glassy carbon electrode was modified with graphene oxide nanosheets and a hybrid of copper-cobalt hexacyanoferrate. The nanocomposite was characterized by cyclic voltammetry, FT-IR and scanning electron microscopy. Cyclic voltammetry showed a stable and reversible redox pair with surface confined characteristics in phosphate buffer solution (0.1 M, pH 3). Hydrodynamic amperometry was used for determination of glutathione at pH 3. The catalytic oxidation peak current varied linearly with the concentration of glutathione in the range of 3.3 × 10-7 to 5.5 × 10-5 M with a limit of detection of 2.5 × 10-7 M. The repeatability was evaluated for 5 successive measurements of a GSH solution (0.48 mM) by the proposed method as relative standard deviation (RSD%), which was 3.02%. When 3 different electrodes were used, the RSD% for GSH determination was 3.34%. The modified electrode was used in the determination of glutathione in hemolysed erythrocyte samples with satisfactory results.

Keywords


[1]       B.J. Mills, C.A. Lang, Biochem. Pharmacol. 52 (1996) 401.

[2]       G.S. Devi, M.H. Prasad, I. Saraswathi, D. Ranghu, D.N. Rao, P.P. Reddy, Clin. Chim. Acta 293 (2000) 53.

[3]       M. McDonagh, L. Ali, A. Kahn, P.R. Flau, Y.A. Barnett, C.R. Barnett, Biochem. Soc. Trans. 25 (1997) 146.

[4]       B. Halliwell, Free Radical Res. 29 (1998) 469.

[5]       S.V. Singh, B.H. Xu, G.T. Tkaleevic, V. Gupta, B. Roberts, P. Quiz, Cancer Lett. 77 (1994) 15.

[6]       A.E. Katrusiak, P.G. Paterson, H. Kamencic, J. Chromatograph. B: Biomed. Sci. Appl. 758 (2001) 207.

[7]       F. Xu, L. Wang, M. Gao, L. Jin, J. Jin, Anal. Bioanal. Chem. 372 (2002) 791.

[8]       S.  Childs,  N.  Haroune,  L.  Williams, M. Gronow,  J. Chromatogr. 1437 (2016) 67.

[9]       I. Satoh, S. Arakawa, A. Okamoto, Anal. Chim. Acta 214 (1988) 415.

[10]    E. Causse, P. Malatray, R. Calaf, P. Chariots, M. Candito, C. Bayle, P. Valdiguie, C.S. F. Couderc, Electrophoresis 21 (2000) 2074.

[11]    M. Raggi, L. Nobile, A.G. Giovannini, J. Pharm. Biomed. Anal. 9 (1991) 1037.

[12]    S.C. Liang, H. Wang, Z.M. Zhang, X. Zhang, H.S. Zhang, Anal. Chim. Acta 451 (2002) 211.

[13]    A.A. Ensafi, T. Khayamian, F. Hasanpour, J. Pharm. Biomed. Anal. 48 (2008) 140.

[14]    Kevin C. Honeychurch, J.P. Hart, Adv. Anal. Chem. 2 (2012) 46.

[15]    M.R. Shahmiri, A. Bahari, H. Karimi-Maleh, R. Hosseinzadeh, N. Mirnia, Sensors Actuators B: Chem. 177 (2013) 70.

[16]    M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, B.-F. Mirjalili, Electroanalysis 25 (2013) 2021.

[17]    J.B. Raoof, N. Teymoori, M.A. Khalilzadeh, R. Ojani, Mater. Sci. Engin.: C 47 (2015) 77.

[18]    [18] P.T. Lee, L.M. Goncalves, R.G. Compton, Sensor. Actuat. B: Chem. 221 (2015) 962.

[19]    V. Vinoth, T.M.D. Rozario, J.J. Wu, S. Anandan, M. Ashokkumar, Chem. Select 2 (2017) 4744.

[20]    R. Koncki, Crit. Rev. Anal. Chem. 32 (2002) 79.

[21]    N.R. de Tacconi, K. Rajeshwar, R.O. Lezna, Chem. Mater. 15 (2003) 3046.

[22]    S. Damiri, Y.M. Oskoei, M. Fouladgar, J. Exp. Nanosci. 11 (2016) 1384.

[23]    G. Shi, J. Lu, F. Xu, W. Sun, L. Jin, K. Yamamoto, S. Tao, J. Jin, Anal. Chim. Acta 391 (1999) 307.

[24]    W.-R. Cai, G.-Y. Zhang, T. Song, X.-J. Zhang, D. Shan, Electrochim. Acta 198 (2016) 32.

[25]    N. Sattarahmady, H. Heli, S.E. Moradi, Sensors Actuators B: Chem. 177 (2013) 1098.

[26]    F. Xu, M. Gao, L. Wang, T. Zhou, L. Jin, J. Jin, Talanta 58 (2002) 427.

[27]    K. Deng, C. Li, X. Qiu, J. Zhou, Z. Hou, Electrochim. Acta 174 (2015) 1096.

[28]    S.-M. Chen, K.-T. Peng, J. Electroanal. Chem. 547 (2003) 179.

[29]    S.J.R. Prabakar, S.S. Narayanan, Talanta 72 (2007) 1818.

[30]    M. Yang, J. Jiang, Y. Yang, X. Chen, G. Shen, R. Yu, Biosensors Bioelectron. 21 (2006) 1791.

[31]    D.R. Shankaran, S.S. Narayanan, Fresenius J. Anal. Chem. 364 (1999) 686.

[32]    R. Garjonyt, A. Malinauskas, Sensors Actuators B: Chem. 46 (1998) 236.

[33]    R. Garjonyte, A. Malinauskas, Sensors Actuators B: Chem. 56 (1999) 93.

[34]    M.B. Gholivand, M. Khodadadian, M. Omidi, Mater. Sci. Engin. C 33 (2013) 774.

[35]    M.R. Majidi, K. Asadpour-Zeynali, B. Hafezi, Microchim. Acta 169 (2010) 283.

[36]    D.R. Shankaran, S.S. Narayanan, Bull. Korean Chem. Soc. 22 (        ) 8.

[37]    P. Prabhu, R.S. Babu, S.S. Narayanan, Colloids Surf. B. Biointerfaces 87 (2011) 103.

[38]    R. Pauliukaite, M.E. Ghica, C.M. Brett, Anal. Bioanal. Chem. 381 (2005) 972.

[39]    I.L. de Mattos, L. Gorton, T. Laurell, A. Malinauskas, A.A. Karyakin, Talanta 52 (2000) 791.

[40]    L. Guadagnini, E. Salatelli, A. Kharina, D. Tonelli, J. Solid State Electrochem. 18 (2014) 2731.

[41]    L. Guadagnini, M. Giorgetti, D. Tonelli, J. Solid State Electrochem. 17 (2013) 2805.

[42]    P.J. Kulesza, M.A. Malik, J. Skorek, K. Miecznikowski, S. Zamponi, M. Berrettoni, M. Giorgetti, R. Marassi, J. Electrochem. Soc. 146 (1999) 3757.

[43]    V.V. Sharma, D. Tonelli, L. Guadagnini, M. Gazzano, Sensors Actuators B: Chem. 238 (2017) 9.

[44]    X. Cui, L. Hong, X. Lin, J. Electroanal. Chem. 526 (2002) 115.

[45]    V.V. Sharma, L. Guadagnini, M. Giorgetti, D. Tonelli, Sensors Actuators B: Chem. 228 (2016) 16.

[46]    F. Jalali, S. Ranjbar, Russ. J. Electrochem. 50 (2014) 482.

[47]    A. Abbaspour, A. Ghaffarinejad, Electrochim. Acta 53 (2008) 6643.

[48]    S. Kochmann, T. Hirsch, O.S. Wolfbeis, TrAC, Trends Anal. Chem. 39 (2012) 87.

[49]    X.-W. Liu, Z.-J. Yao, Y.-F. Wang, X.-W. Wei, Colloids Surf. B. Biointerfaces 81 (2010) 508.

[50]    W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.

[51]    Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130 (2008) 5856.

[52]    G.L. Ellman, Arch. Biochem. Biophys. 82 (1959) 70.

[53]    M.P. Westerman, Y. Zhang, J.P. McConnell, P.A. Chezick, R. Neelam, S. Freels, L.S. Feldman, S. Allen, R. Baridi, L.E. Feldman, Am. J. Hematol. 65 (2000) 174.

[54]    B.J. Mills, C.A. Lang, Biochem. Pharmacol. 52 (1996) 401.

[55]    S. Zhang, W.-L. Sun, W. Zhang, W.-Y. Qi, L.-T. Jin, K. Yamamoto, S. Tao, J. Jin, Anal. Chim. Acta 386 (1999) 21.

[56]    A. Dostal, B. Meyer, F. Scholz, U. Schroeder, A.M. Bond, F. Marken, S.J. Shaw, J. Phys. Chem. 99 (1995) 2096.

[57]    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals  and  Applications,  Wiley  New   York, 2000.

[58]    J.B. Raoof, R. Ojani, H. Karimi-Maleh, J. Appl. Electrochem. 39 (2009) 1169.

[59]    J. Raoof, R. Ojani, M. Kolbadinezhad, J. Solid State Electrochem. 13 (2009) 1411.

[60]    A.A. Ensafi, M. Taei, T. Khayamian, H. Karimi-Maleh, F. Hasanpour, J. Solid State Electrochem. 14 (2010) 1415.

[61]    H. Tang, J. Chen, L. Nie, S. Yao, Y. Kuang, Electrochim. Acta 51 (2006) 3046.

[62]    R.R. Moore, C.E. Banks, R.G. Compton, Analyst 129 (2004) 755.

[63]    A.A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, Drug Test Anal. 4 (2011) 978.

[64]    S.Y. Chee, M. Flegel, M. Pumera, Electrochem. Commun. 13 (2011) 963.