Raoof, J., Kiani, A., Ojani, R., Valiollahi, R. (2014). Direct Electrochemistry of Polyphenol Oxidase. Analytical and Bioanalytical Chemistry Research, 1(2), 92-98. doi: 10.22036/abcr.2014.6014
Raoof, J., Kiani, A., Ojani, R., Valiollahi, R. (2014). 'Direct Electrochemistry of Polyphenol Oxidase', Analytical and Bioanalytical Chemistry Research, 1(2), pp. 92-98. doi: 10.22036/abcr.2014.6014
Raoof, J., Kiani, A., Ojani, R., Valiollahi, R. Direct Electrochemistry of Polyphenol Oxidase. Analytical and Bioanalytical Chemistry Research, 2014; 1(2): 92-98. doi: 10.22036/abcr.2014.6014
1Electroanalytical Chemistry Research Lab.
Department of Analytical Chemistry
Faculty of Chemistry
University of Mazandaran
Babolsar
Iran
e-mail: j.raoof@umz.ac.ir
Fax: +98 112 5342350
2Department of Chemistry, Faculty of Science, University of Isfahan, Isfahan, Iran
3Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, IranPostal Code: 47416- 95447
Abstract
The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH, scan rate of potential and heating on the electrochemical properties of polyphenol oxidase in banana tissues were examined. For apple tissues, a same signal is observed on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes. It was found that presence of carbon nanotubes (CNTs) is essential to observe the electrochemical activity of polyphenol oxidase in banana and apple tissues. In this paper, the electrochemistry of fruits was described. We have shown that multi-walled carbon nanotubes can enhance the direct electron transfer between the electroactive center of polyphenol oxidase in banana tissues and the underlying electrode.
[1] S. Shleev, J. Tkac, A. Christenson, Tautgirdas Ruzgasa, A.I. Yaropolov, J.W. Whittaker, L. Gorton, Biosens. Bioelectron. 20 (2005) 2517.
[2] M.J. Eddowes, H.A.O. Hill, J. Chem. Soc. Chem. Commun. 21 (1977) 771.
[3] P. Yeh, T. Kuwama, Chem. Lett. 6 (1977) 1145.
[4] A. Christenson, N. Dimcheva, E.F. Ferapontova, L. Gorton, T. Ruzgas, L.Stoica, S. Shleev, A.I. Yaropolov, D. Haltrich, R.N.F. Thornely, S.D. Aust, Electroanalysis 16 (2004) 1074.
[5] E.E. Ferapontova, Electroanalysis 16 (2004) 1101.
[6] J. Liu, F. Wu, L. Chen, L. Zhao, Z. Zhao, M. Wang, S. Lei, Food Chem. 135 (2012) 2872.
[7] S. Singh, D.V.S. Jain, M.L. Singla, Sens. Actuat. B 182 (2013) 161.
[8] M. ElKaoutit, I. Naranjo-Rodriguez, K.R. Temsamani, M. Dom´ınguez, J.L.H.-H.d. Cisneros, Talanta 75 (2008) 1348.
[9] S. Wu, H. Wang, S. Tao, C. Wang, L. Zhang, Z. Liu, C. Meng, Analytica Chimica Acta, 686 (2011) 81.
[10] L. Yang, H. Xiong, X. Zhang, S. Wang, Bioelectrochemistry, 84 (2012) 44.
[11] J. Zhao, D. Wu, J. Zhi, Bioelectrochemistry, 75 (2009) 44.
[12] F. Giroud, C. Gondran, K. Gorgy, V. Vivier, S. Cosnier, Electrochimica Acta, 85 (2012) 278.
[13] B. Reuillard, A.L. Goff, C. Agnès, A. Zebda, M. Holzinger, S. Cosnier, Electrochemistry Communications, 20 (2012) 19.
[14] M. Penza, F. Antolini, M.V. Antisari, Sens. Actuat. B 100 (2004) 47.