Electrochemical Determination of Mesalazine by Modified Graphite Paste Electrode with Poly (Benzoquinone) Chromium(III) Complex

Document Type: Research Paper


Analytical Research Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P. O. Box: 98135-674, Iran


In this work, for the first time poly (benzoquinone) chromium (III) complex (PBQC) was synthesized with a one pot, one step, simple and fast method. This novel polymer was used for modification of graphite paste electrode for electrochemical determination of Mesalazine. Moreover, this novel modifier was characterized by Fourier transform infrared spectroscopy, Field emission scanning electron microscopy, Energy-dispersive X-ray spectroscopy, Electrochemical impedance spectroscopy and electrochemistry methods such as cyclic voltammetry and differential pulse voltammetry. Various parameters which affect the electroanalytical application of this modified electrode were optimized and under the optimum condition, the calibration curve was linear in a wide range from 2 to 600 µM with a detection limit (S/N=3) of 70 nM. The proposed modified electrode is a good candidate for the determination of Mesalazine with satisfactory results in comparison with the other literature. Moreover, the proposed modified electrode, GPE/PBQC, was successfully used for determination of Mesalazine in pharmaceutical tablets.


[1]       J. Tang, O. Sharif, C. Pai, A.L. Silverman, Dig. Dis. Sci. 55 (2010) 1696.

[2]       A. Moharana, M. Banerjee, S. Panda, J. Muduli, Int. J. Pharm. Pharm. Sci. 3 (2011) 19-.

[3]       S. Nandipati, D.V.K. Reddy, S. Uba, in:  Conference on Harmonization (ICH) Guidelines, 2013, pp. 15.

[4]       H. Abdolmohammad-Zadeh, S. Kohansal, J. Braz. Chem. Soc. 23 (2012) 473.

[5]       M.S. Alaejos, F.J. Garcia Montelongo, Chem. Rev. 104 (2004) 3239.

[6]       M. Štěpánková, R. Šelešovská, L. Janíková, J. Chýlková, Chem. Papers 71 (2017) 1419.

[7]       S. Kim, N. Wang, Y. Li, X. He, Anal. Methods 8 (2016) 7780.

[8]       J. Sun, J.-D. Mao, H. Gong, Y. Lan, J. Hazard. Mater. 168 (2009) 1569.

[9]       [9] X. Tian, X. Gao, F. Yang, Y. Lan, J.-D. Mao, L. Zhou, Geoderma 159 (2010) 270.

[10]    X. Cao, J. Guo, J. Mao, Y. Lan, J. Hazard. Mater. 192 (2011) 1533.

[11]    L.-C. Hsu, Y.-T. Liu, Y.-M. Tzou, J. Hazard. Mater. 296 (2015) 230.

[12]    N.E.   Naftchi,   M.A.   Becker,  A.S.  Akerkar,   Anal. Biochem. 66 (1975) 423.

[13]    D.I. Pattison, P.A. Lay, M.J. Davies, Inorg. Chem. 39 (2000) 2729.

[14]    C.-Y. Cheng, Y.-T. Chan, Y.-M. Tzou, K.-Y. Chen, Y.-T. Liu, J. Spectr. 2016 (2016).

[15]    M. McBride, F. Sikora, J. Inorg. Biochem. 39 (1990) 247.

[16]    T. López, J.L. Bata-García, D. Esquivel, E. Ortiz-Islas, R. Gonzalez, J. Ascencio, P. Quintana, G. Oskam, F.J. Álvarez-Cervera, F.J. Heredia-López, Int. J. BNanomed. 6 (2011) 19.

[17]    S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, V. Narayanan, Spectrochim. Acta A 139 (2015) 431.

[18]    A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, Wiley New York, 1980.

[19]    A.J. Bard, L.R. Faulkner, Springer, 2002.

[20]    S.K.   Hassaninejad-Darzi,   M.   Rahimnejad,  J.  Iran. Chem. Soc. 11 (2014) 1047.

[21]    H. Gharibi, K. Kakaei, M. Zhiani, J. Phys. Chem. C 114 (2010) 5233.

[22]    A. Abbaspour, M.A. Kamyabi, J. Electroanal. Chem. 576 (2005) 73.

[23]    J. Harrison, Z. Khan, J. Electroanal. Chem. Interf. Electrochem. 28 (1970) 131.

[24]    D. Pletcher, R. Greff, R. Peat, L. Peter, J. Robinson, Instrumental Methods in Electrochemistry, Elsevier, 2001.

[25]    A. Afkhami, D. Nematollahi, L. Khalafi, M. Rafiee, Int. J. Chem. Kin. 37 (2005) 17.

[26]    R.K. Palsmeier, D.M. Radzik, C.E. Lunte, Pharm. Res. 9 (1992) 933.

[27]    B. Nigović, M. Sadiković, S. Jurić, Talanta 147 (2016) 50.

[28]    F. Alasha Abdalla, A. Elbashir, Med. l Chem. 4 (2014) 361.