Construction of a Carbon Paste Electrode Based on Novel Thiolated Ligand Capped Gold Nanoparticles for Determination of Trace Amounts of Mercury(II)

Document Type: Research Paper

Authors

Sirjan Branch, Islamic Azad University, Sirjan, Iran

Abstract

In the present study, a simple electrochemical sensor for trace determination of Hg(II) ions in aqueous solutions was introduced. The proposed sensor was designed by incorporation of the 4-methyl-piperidine-carbodithioate capped gold nanoparticles (GNPs) into the carbon paste electrode (CPE), which provides a remarkably improved sensitivity for stripping voltammetric determination of Hg(II). Differential pulse voltammetry (DPV) was applied for quantitative determinations. The resulting electrode exhibited a linear relationship towards Hg(II) concentrations ranging from 0.4 to 100.0 μg L-1. The detction limit was found to be 0.2 μg L-1 (S/N = 3) that is lower than the permitted value of Hg(II) reported by the Environmental Protection Agency (EPA) limit for drinkable water. The relative standard deviation (RSD) for 7 successive measurements at different electrodes was also found to be 3.8%. The interference studies showed that the several common metal ions did not interfere with the quantitative mercury determination. The designed sensor was further utilized for the determination of mercury ions in real water samples with satisfactory results.

Keywords


 [1]       M. Bahram, S. Jahangiri, K. Farhadi, R. Hasanzadeh, Anal. Bioanal. Chem. Res. 1 (2014) 29.

[2]       M. Ghanei-Motlagh, M. Taher, Chem. Engin. J. 327 (2017) 135.

[3]       M. Ghanei-Motlagh, M.A. Taher, Anal. Bioanal. Chem. Res. 4 (2017) 295.

[4]       S. Mohapatra, S. Sahu, N. Sinha, S.K. Bhutia, Analyst 140 (2015) 1221.

[5]       V.K. Gupta, B. Sethi, R. Sharma, S. Agarwal, A. Bharti, J. Mol. Liq. 177 (2013) 114.

[6]       P. D'Ltri, F. D'Ltri, Environ. Manage. 2 (1978) 3.

[7]       P.B. Tchounwou, W.K. Ayensu, N. Ninashvili, D. Sutton, Environmen. Toxicol. 18 (2003) 149.

[8]       D.G. da Silva, L.A. Portugal, A.M. Serra, S.L.C. Ferreira, V. Cerdà, Food Chem. 137 (2013) 159.

[9]       J.C. de Wuilloud, R.G. Wuilloud, M.a.F. Silva, R.A. Olsina, L.D. Martinez, Spectrochimica Acta Part B: Atomic Spectroscopy 57 (2002) 365.

[10]    M. Tuzen, O.D. Uluozlu, I. Karaman, M. Soylak, J. Hazard. Mater. 169 (2009) 345.

[11]    J. Chen, H. Chen, X. Jin, H. Chen, Talanta 77 (2009) 1381.

[12]    M. Amiri, H. Salehniya, A. Habibi-Yangjeh, Indust. Engin. Chem. Res. 55 (2016) 8114.

[13]    M. Ghanei-Motlagh, M. Fayazi, M.A. Taher, Sensors and Actuators B: Chem. 199 (2014) 133.

[14]    S. Anandhakumar, J. Mathiyarasu, K.L.N. Phani, Anal. Methods 4 (2012) 2486.

[15]    X. Yu, Z. Zhou, Y. Wang, Y. Liu, Q. Xie, D. Xiao, Sensors and Actuators B: Chem. 123 (2007) 352.

[16]    D.W.M. Arrigan, Analyst 119 (1994) 1953.

[17]    M.G. Paneli, A. Voulgaropoulos, Electroanalysis 5 (1993) 355.

[18]    D. Martín-Yerga, M.B. González-García, A. Costa-García, Talanta 116 (2013) 1091.

[19]    M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, Sensors and Actuators B: Chem. 213 (2015) 515.

[20]    O.  Ordeig,  C.E.  Banks,  J.  del Campo,  F.X.  Muñoz, R.G. Compton, Electroanalysis 18 (2006) 573.

[21]    G.O. Buica, C. Bucher, J.C. Moutet, G. Royal, E. Saint-Aman, E.M. Ungureanu, Electroanalysis 21 (2009) 77.

[22]    I. Cesarino, G. Marino, J. do Rosário Matos, E.T.G. Cavalheiro, Talanta 75 (2008) 15.

[23]    L. Fink, D. Mandler, J. Electroanal. Chem. 649 (2010) 153.

[24]    I. Švancara, A. Walcarius, K. Kalcher, K. Vytřas, Open Chem. 7 (2009) 598.

[25]    M.B. Gholivand, B. Geravandi, M.H. Parvin, Electroanalysis 23 (2011) 1345.

[26]    M.E. Mahmoud, S.B. Ahmed, M.M. Osman, T.M. Abdel-Fattah, Fuel, 139 (2015) 614.

[27]    A. Heydari, H. Sheibani, V. Hronský, I. Janigová, M. Šlouf, P. Šiffalovič, I. Chodák, Chem. Papers 72 (2018) 1299.

[28]    M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, J. Mol. Liq. 216 (2016) 781.

[29]    M.R. Hormozi-Nezhad, S. Ghayyem, Analytical and Bioanal. Chem. Res. 1 (2014) 139.

[30]    M. Ghanei-Motlagh, C. Karami, M. Taher, S. Hosseini-Nasab, RSC Adv. 6 (2016) 89167.

[31]    A.K. Attia, M. Abd-Elmoety, A.M. Badawy, A.-E. Abd-Elaleem, S.G. Abd-Elhamid, Anal. Bioanal. Chem. Res. 1 (2014) 128.

[32]    F. Lucarelli, G. Marrazza, A.P. Turner, M. Mascini, Biosens. Bioelectron. 19 (2004) 515.

[33]    R. Segura, J. Pizarro, K. Díaz, A. Placencio, F. Godoy, E. Pino, F. Recio, Sensors and Actuators B: Chem. 220 (2015) 263.

[34]    J. Orozco, C. Fernández-Sánchez, C. Jiménez-Jorquera, Environ. Sci. Technol. 42 (2008) 4877.

[35]    J. Zhou, L. Du, L. Zou, Y. Zou, N. Hu, P. Wang, Sensors and Actuators B: Chem. 197 (2014) 220.

[36]    L. Agüí, C. Peña-Farfal, P. Yáñez-Sedeño, J.M. Pingarrón, Talanta 74 (2007) 412.

[37]    P. Nath, M.K. Bharty, B. Maiti, A. Bharti, R.J. Butcher, J.L. Wikaira, N.K. Singh, RSC Adv. 6 (2016) 93867.

[38]    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. (1994) 801.

[39]    M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Sensors and Actuators B: Chem. 228 (2016) 1.

[40]    E. Bernalte, C.M. Sánchez, E.P. Gil, Anal. Chimica Acta 689 (2011) 60.

[41]    A. Afkhami, S. Sayari, F. Soltani-Felehgari, T. Madrakian, J. Iran. Chem. Soc. 12 (2015) 257.

[42]    Y. Zhang, H. Zhao, Z. Wu, Y. Xue, X. Zhang, Y. He, X. Li, Z. Yuan, Biosens. Bioelectron. 48 (2013) 180.

[43]    H.R. Rajabi, M. Roushani, M. Shamsipur, J. Electroanal. Chem. 693 (2013) 16.

[44]    G. Cabello-Carramolino, M. Petit-Dominguez, Anal. Chimica Acta 614 (2008) 103.

[45]    S. Sahoo, A. Satpati, A. Reddy, RSC Adv. 5 (2015) 25794.