Highly Fast and Efficient Removal of some Cationic Dyes from Aqueous Solutions Using Sulfonated-oxidized Activated Carbon

Document Type: Research Paper

Authors

1 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

2 Bu-Ali Sin Faj av. Hamedan, 65174

Abstract

In this study, the potentiality of Sulfonated-Oxidized activated carbon as an adsorbent for removing Methylene Blue (MB), Crystal Violet (CV), and Thionin Acetate (Th) from aqueous solutions was investigated. The characteristics of the synthesized adsorbent were examined by FTIR and SEM techniques. By changing experimental conditions like contact time and adsorbent dosage, initial pH was studied to find the optimum adsorption conditions. The results showed that the adsorption process is too fast and after about 1 minute more than 95% of dyes (20 mg L-1) were completely removed. The experimental data were well represented by Freundlich adsorption isotherm and the maximum adsorption capacities of MB, CV, Th dyes were calculated about 410.0, 405.5, 395.4 mg g-1 respectively. These findings are considerably higher than the adsorption capacities of reported adsorbent in the literature. In addition, simultaneous removal of the reported dyes was also carried out and more than 98% removal efficiency was obtained, therefore Sulfonated-oxidized activated carbon appears as an economical and effectual adsorbent for removal of MB, CV, Th from industrial waste waters.

Keywords


[1]       S.Y. Oh, D.K. Cha, P.C. Chiu, B.J. Kim, Water Sci. Techn. 49 (2004) 129.

[2]       S. Papić, N. Koprivanac,  A.L., Božić,  A. Meteš, Dyes & pigments 62 (2004) 291.

[3]       P. Bayer, M. Finkel, J. Contam. Hydrol. 78 (2005) 129.

[4]       Y. Lin, C. Weng, F. Chen, J. Sep. Purif. Technol. 64 (2008) 26.

[5]       A. Stolz, Appl. Microbiol. Biotechnol. 56 (2001) 69.

[6]       E. Guibal, J. Roussy, React. Funct. Polym. 67 (2007) 33.

[7]       K. Dutta, S. Mukhopadhyaya, S. Bhattacharjee, B. Chaudhuri, J. Hazard. Mater. 84 (2001) 57.

[8]       G. Capar, U. Yetis, L. Yilmaz, J. Hazard. Mater. 135 (2006) 423.

[9]       W. Zhao, Z. Wu, D. Wang, J. Hazard. Mater. 137 (2006) 1859.

[10]    C.H. Liu, J.S. Wu, H.C. Chiu, S.Y. Suen, K.H. Chu, Water Res. 41 (2007) 1491.

[11]    M. Muruganandham, M. Swaminathan, J. Hazard. Mater. 135 (2006) 78.

[12]    R. De Lisi, G. Lazzara, S. Milioto, N. Muratore, Chemosphere 69 (2007) 1703.

[13]    A. Afkhami, R. Moosavi, J. Hazard. Mater. 174 (2010) 398.

[14]    M.C. Gutierrez, M. Pepio, M. Crespi, Color Technol. 118 (2002) 1.

[15]    I. Arslan, I.A. Balcioglu Color Technol. 117 (2001) 38.

[16]    M. Kornaros, G. Lyberatos, J. Hazard. Mater. 136 (2006) 95.

[17]    I.K. Kapdan, R. Ozturk, J. Hazard. Mater. 123 (2005) 217.

[18]    A. Ozcan, A.S. Ozcan. J. Hazard. Mater. 125 (2005) 252.

[19]    G. Crini, Bioresource Technol. 97 (2006) 1061.

[20]    A. Afkhami, T. Madrakian, A. Amini, Z. Karimi, J. Hazard. Mater. 150 (2008) 408.

[21]    A. Afkhami, T. Madrakian, Z. Karimi, A. Amini, Colloids Surf. A 304 (2007) 36.

[22]    Y. Ding, X. Zhang, X. Liu, R. Guo, Langmuir 22 (2006) 2292.

[23]    W.P. Dow, C.C. Li, Y.C. Su, S.P. Shen, C.C. Huang, C. Lee, B. Hsu, S. Hsu, Electrochim. Acta 54 (2009) 5894.

[24]    Y.C. Sharma, S.N. Upadhyay, Energy & Fuels 23 (2009) 2983.     

[25]    T. Madrakian, A. Afkhami, H. Mahmood-Kashani, M. Ahmadi, J. Iran. Chem. Soc. 10 (2013) 481.

[26]    L. Zhang, Y. Liu, S. Wang, B. Liu, J. Peng, RSC Adv. 5 (2015) 99618.

[27]    C. Wang, X. Gui, Z. Yun, Reac. Kinet., Mech. Catal. 113 (2014) 211.

[28]    S. Scalese, I. Nicotera, D. D'Angelo, S. Filice, S.  Libertino, C. Simari, V. Privitera, New J. Chem. 40 (2016) 3654.

[29]    I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361.

[30]    H. Freundlich, W. Heller, J. Am. Chem. Soc. 61 (1939) 2228.

[31]    O. Redlich, D.L. Peterson, J. Phys. Chem. 63 (1959) 1024.

[32]    M.J. Temkin, V. Pyzhe, Acta Physiochim. URSS (1940) 217.

[33]    R.Sips, J. Chem. Phys. 16 (1948) 490.

[34]    D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. 10 (2017) S1445.

[35]    J.J. Gao, Y.B. Qin, T. Zhou, D.D.  Cao, P. Xu, D. Hochstetter, Y.F.J. Wang, Zhejiang Univ. Sci. B 14 (2013) 650.

[36]    B.H.H.M. Mudyawabikwa, L. Tichagwa, D.M.  Katwire, Water Sci. Techn. 10 (2017) 2390.

[37]    O.S. Amuda, A.O. Olayiwola, A.O. Alade, A.G. Farombi,   S.A.   Adebisi,   J.  Environ.  Prot.  5 (2014) 1352.

[38]    M.A. Khan, Z.A. Alothman, M. Naushad, M.R. Khan, M. Luqman, Desalin Water Treat 53 (2015) 515.

[39]    P. Bradder, S.K. Ling, S. Wang, S. Liu, J. Chem. Eng. Data 56 (2010) 138.

[40]    S. Hamidzadeh, M. Torabbeigi, S.J. Shahtaheri, J. Environ. Health Sci. Eng. 13 (2015) 8.

[41]    W. Wang, Y. Zhao, H. Bai, T. Zhang, V. Ibarra-Galvan, S. Song, Carbohydr. Polym. 198 (2018) 518.

[42]    E. Haque, J.W. Jun, S.H. Jhung, J. Hazard Mater. 185 (2011) 507.