Titanium Dioxide Nanofibers Decorated Nickel Nanoparticles as Effective Electrocatalyst for Urea Oxidation

Document Type: Research Paper

Authors

Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran

Abstract

The improvement of nanotechnology has been increasing along the last years and nanostructured materials have important consideration due to their unique properties. In this work, for the first time, a novel construction procedure for urea oxidation based on titanium dioxide (TiO2) nanofibers (NFs) decorated Ni nanoparticles (NiNPs) is reported. Nickel nanoparticles were electrodeposed on the surface of titanium dioxide nanofibers (TNF-NiNPs) and the resulting modified electrode was characterized by scanning electron microscopy (SEM). Urea electro-oxidation reaction in NaOH solution on (TNF-NiNPs) as electrode is studied by cyclic voltammetry (CV) and chronoamperometry (CA) method. The surface coverage of TNF-NiNPs /GC electrode was calculated to be г*a =4.16× 10-7 mol cm2, which is higher than corresponding value reported for the urea biosensor using Ni matrix. The electrochemical results showed that the presented electrode is effective and has good electrocatalytic activity for urea oxidation and the structures of nanofibers have great effect on the electrooxidation of urea.
Keywords: Urea electrooxidation; Electrospinning; Nickel nanoparticles; Titanium dioxide nanofiber

Keywords


[1]       T. Trindade, P. O’Brien, N.L. Pickett, Chem. Mater. 13 (2001) 3843.

[2]       A.P. Alivisatos, J. Phys. Chem. 100 (1996) 13226.

[3]       M. Mazloum-Ardakani, A. Khoshroo, N. Taghavinia, L. Hosseinzadeh, RSC Adv. 6 (2016) 12537.

[4]       Y. Cho, W.H. Lee, H. Kim, J. Electrochem. Soc. 164 (2017) F65.

[5]       M. Mazloum-Ardakani, A. Khoshroo, Electrochim. Acta 130 (2014) 634.

[6]       M. E. Unates, M.E. Folquer, J.R. Vilche, A.J. Arvia, J. Electrochem. Soc. 139 (1992) 2697.

[7]       M. Mazloum-Ardakani, E. Amin-Sadrabadi, A. Khoshroo, J. Electroanal. Chem. 775 (2016) 116.

[8]       C.M. Welch, R.G. Compton, Anal. Bioanal. Chem. 384 (2006) 601.

[9]       A.L.  Rinaldi,  S.  Sobral, R. Carballo,  Electroanalysis

 

 

29 (2017) 1961.

[10]    S.N.S. Goubert-Renaudin, A. Wieckowski, J. Electroanal. Chem. 652 (2011) 44.

[11]    M. Jafarian, M. Babaee, F. Gobal, M.G. Mahjani, J. Electroanal. Chem. 652 (2011) 8.

[12]    L. Bian, Q. Du, M. Luo, L. Qu, M. Li, Int. J. Hydrogen Energy 42 (2017) 25244.

[13]    F. Yang, K. Cheng, K. Ye, X. Xiao, F. Guo, J. Yin, G. Wang, D. Cao, Electrochim. Acta 114 (2013) 478.

[14]    B.K. Boggs, R.L. King, G.G. Botte, Chem. Commun. 4859 (2009).

[15]    F. Bedioui, A. Ordaz, S.J. Ferrer, S. Gutie, 70 (2003).

[16]    A.T. Miller, B.L. Hassler, G.G. Botte, J. Appl. Electrochem. 42 (2012) 925.

[17]    R.L. King, G.G. Botte, J. Power Sources 196 (2011) 2773.

[18]    V. Vedharathinam, G.G. Botte, Electrochim. Acta 81 (2012) 292.

[19]    V. Vedharathinam, G.G. Botte, Electrochim. Acta 108 (2013) 660.

[20]    D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, J. Power Sources 217 (2012) 498.

[21]    K. Ye, D. Zhang, F. Guo, K. Cheng, G. Wang, D. Cao, J. Power Sources 283 (2015) 408.

[22]    F. Guo, K. Ye, K. Cheng, G. Wang, D. Cao, J. Power Sources 278 (2015) 562.

[23]    W. Yan, D. Wang, L.A. Diaz, G.G. Botte, Electrochim. Acta 134 (2014) 266.

[24]    J.-C. Chen, J.-C. Chou, T.-P. Sun, S.-K. Hsiung, Sensors Actuators B Chem. 91 (2003) 180.

[25]    C.-P. Huang, Y.-K. Li, T.-M. Chen, Biosens. Bioelectron. 22 (2007) 1835.

[26]    A. Maaref, H. Barhoumi, M. Rammah, C. Martelet, N. Jaffrezic-Renault, C. Mousty, S. Cosnier, Sensors Actuators B Chem. 123 (2007) 671.

[27]    M. Vidotti, M.R. Silva, R.P. Salvador, S.I.C. de Torresi, L.H. Dall’Antonia, Electrochim. Acta 53 (2008) 4030.

[28]    C.C. Jara, S. Di Giulio, D. Fino, P. Spinelli, J. Appl. Electrochem. 38 (2008) 915.

[29]    W. Simka, J. Piotrowski, A. Robak, G. Nawrat, J. Appl. Electrochem. 39 (2009) 1137.

[30]    B.J. Hernlem, Water Res. 39 (2005) 2245.

 

 

[31]    R. Lan, S. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438.

[32]    N.A.M. Barakat, M.H. El-Newehy, A.S. Yasin, Z.K. Ghouri, S.S. Al-Deyab, Appl. Catal. A Gen. 510 (2016) 180.

[33]    S. Huang, Y. Ding, Y. Liu, L. Su, R. Filosa, Y. Lei, Electroanalysis 23 (2011) 1912.

[34]    I.-D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Nano Lett. 6 (2006) 2009.

[35]    M. Bahram, S. Salami, M. Moghtader, P. Najafi Moghadam, A. Reza Fareghi, M. Rasoli, S. Salimpoor, Anal. Bioanal. Chem. Res. 4 (2017) 53.

[36]    H. Yoon, J. Jang, Adv. Funct. Mater. 19 (2009) 1567.

[37]    S.R. Hosseini, S. Ghasemi, M. Kamali-rousta, Int. J. Hydrogen Energy 2 (2016).

[38]    A. Stafiniak, B. Boratyński, A. Baranowska-Korczyc, A. Szyszka, M. Ramiączek-Krasowska, J. Prażmowska, K. Fronc, D. Elbaum, R. Paszkiewicz, M. Tłaczała, Sensors Actuators B Chem. 160  (2011) 1413.

[39]    N.A.M. Barakat, M.A. Yassin, A.S. Yasin, Int. J. Hydrogen Energy 1 (2017).

[40]    H. Tang, F. Yan, Q. Tai, H.L.W. Chan, Biosens. Bioelectron. 25 (2010) 1646.

[41]    S. Bao, C.M. Li, J. Zang, X. Cui, Y. Qiao, J. Guo, Adv. Funct. Mater. 18 (2008) 591.

[42]    K. Mondal, M.A. Ali, V.V Agrawal, B.D. Malhotra, A. Sharma, ACS Appl. Mater. Interfaces 6 (2014) 2516.

[43]    Q. Kang, L. Yang, Q. Cai, Bioelectrochemistry 74 (2008) 62.

[44]    M. Mazloum-Ardakani, A. Khoshroo, Anal. Chim. Acta 798 (2013) 25.

[45]    L. Larrondo, R.S.T.J. Manley 19 (1981) 909.

[46]    M. Mazloum-Ardakani, M. Yavari, A. Khoshroo, Electroanalysis 29 (2017) 231.

[47]    R. Das, B.K. Das, R. Shukla, T. Prabaharan, A. Shyam, Sadhana 37 (2012) 629.

[48]    Y. Ni, L. Jin, L. Zhang, J. Hong, J. Mater. Chem. 20 (2010) 6430.

[49]    M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. Interfacial Electrochem. 31 (1971) 39.

 

 

[50]    M. Vuković, J. Appl. Electrochem. 24 (1994) 878.

[51]    R. Ostermann, D. Li, Y. Yin, J.T. McCann, Y. Xia, Nano Lett. 6 (2006) 1297.

[52]    J. Zhu, J. Jiang, J. Liu, R. Ding, Y. Li, H. Ding, Y. Feng, G. Wei, X. Huang, Rsc Adv. 1 (2011) 1020.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[53]    A.J. Bard, L.R. Faulkner, Electrochem. Methods, 2nd Ed.; Wiley New York, 2001.

[54]    M. Tyagi, M. Tomar, V. Gupta, Biosens. Bioelectron. 41 (2013) 110.