Multivariate Curve Resolution-alternative Least Squares for Simultaneous Kinetic–Spectrophotometric Determination of Furosemide and Rizatriptan in Real Samples Based on their Degradation Study

Document Type : Research Paper

Authors

1 Department of Chemistry, faculty of Science, Urmia University, Urmia, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

Abstract

So far, much research has been conducted to measure drug analytes both in pure form or simultaneously and different methodologies have been employed with their respective advantages and disadvantages. In this work, we have tried to carry out efficient measurements with lower cost and shorter time using MCR-ALS for simultaneous determination of Furosemide and Rizatriptan benzoate in their mixtures by analyzing kinetic-spectrophotometric data matrices obtained from monitoring of the drug degradation reactions induced by chlorine at optimized pH. Because of the presence of high spectral overlapping between the analyzed drugs and similar kinetic profiles, the obtained matrix is rank-deficient and hence matrix augmentation was performed for simultaneous analysis of drugs in their mixture. Calibration curves were linear in the ranges 3- 50 μM and 2- 50 μM for Furosemide and Rizatriptan respectively. Satisfactory recoveries were obtained and the method showed good analytical performance toward determination of Furosemide and Rizatriptan in real samples.

Keywords


[1]       M. CHamsaz, A. Safavi, J. Fadaee, Anal. Chim. Acta 603 (2007) 140.
[2]       A. Dasgupta, P. Datta, Handbook of Drug Monitoring Methods, Humana Press, 2008.
[3]       M. Fathinia, A. Khataee, A. Naseri, S. Aber, Mol. Biomol. Spectrosc. 136 (2015) 1275.
[4]       A. Khataee, A. Hasanzadeh, M. Iranifam, S.W. Joo, Sens. Actuators B 215 (2015) 272.
[5]       HS. Frazier, H. Yager, N. Engl. Med. 288 (1973) 455.
[6]       G. Cantarovich, C. Galli, L. Benedetti, C. Chena, L. Castro, C. Correa, J.P. Loredo, J.C. Fernandez, A. Locatelli, J. Tizado, Br. Med. J. 24 (1973) 449.
[7]       G. Gonzalez, A. Arancibia, M.I. Rivas, P. Caro, C. Antezana, Eur. J. Clin. Pharmacol. 22 (1982) 315.
[8]       M.B. Gholivand, M. Khodadadian, F. Ahmadi, Anal. Chim. Acta 658 (2010) 225.
[9]       B.M. Rao, S. Sangaraju, M.K. Srinivasu, P. Madhavan, M.L. Devi, P.R. Kumar, K.B. Chandrasekhar, C. Arpitha, T.S. Balaji, J. Pharm. Biomed. Anal. 41 (2006) 1146.
[10]    J. Jumppanen, H. Siren, M.L. Riekkola, J. Chromatogr. A 652 (1993) 441.
[11]    S.P. Lalljie, M.B. Barroso, D. Steenackers, R.M. Alonso, R.M. Jiménez, P. Sandra, J. Chromatogr. B. Biomed. Sci. Appl. 688 (1997) 71.
[12]    S. Carda-Broch, J. Esteve-Romero, M.J. Ruiz-Angel, M.C. García-Alvarez-Coque, Analyst 127 (2002) 29.
 
 
[13]    M.E. Abdel-Hamid, Farmaco 55 (2000) 448.
[14]    Y. Chen, H. Miao, M. Lin, G. Fan, Z. Hong, H. Wu, Y. Wu, J. Chromatogr. B 844 (2006) 268.
[15]    S. Velusamy, V.M. Masimukku, S. Chereddy, J.K. Jadapalli, K. Palur, S.C. Archakam, R.K. Kumarachari, Int. J. Anal. Chem. 4 (2013) 108.
[16]    D.R. El-Wasseef, D.T. El-Sherbiny, M.A. Abu-El-Enein, S.M. El-Ashry, J. Fluoresc 19 (2009) 817.
[17]    A.A. Emam, E.A. Abdelaleem, I.A. Naguib, F.F. Abdallah, N.W. Ali, Spectrochim. Acta A 192 (2018) 427.
[18]    V.H. Luiz, L. Pezza, H.R. Pezza, Microchem. J. 109 (2013) 68.
[19]    K.A. Rawat, K.R. Surati, S.K. Kailasa, Anal. Methods 15 (2014) 5972.
[20]    M. Soleimani, M. Ahmadi, T. Madrakian, A. Afkhami, Sens. Actuators B254 (2018) 1225.
[21]    R. Heidarimoghadam, A. Farmany, Mater. Sci. Eng. C 58 (2016) 1242.
[22]    T. Madrakian, S. Maleki, M. Heidari, A. Afkhami, Mater. Sci. Eng. C 63 (2016) 673.
[23]    S.J. Malode, J.C. Abbar, N.P. Shetti, S.T. Nandibewoor, Electrochim. Acta 60 (2012) 95.
[24]    N.L. Teradal, P.S. Narayan, A.K. Satpati, J. Seetharamappa, Sens. Actuators B 196 (2014) 596.
[25]    T.S. Martins, J.L. Bott-Neto, P.A. Raymundo-Pereira, E.A. Ticianelli, S.A. Machado, Sens. Actuators B276 (2018) 378.
[26]    M.R. Moghadam, S. Dadfarnia, A.M. Shabani, P. Shahbazikhah, Anal. Biochem. 410 (2011) 289.
[27]    M.  De  Luca, R.  Tauler,  G.  Ioele,  G.  Ragno,  Drug.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test. Anal. 5 (2013) 96.
[28]    S. Mas, A. de Juan, S. Lacorte, R. Tauler, Anal. Chim. Acta 618 (2008) 18.
[29]    M. De Luca, S. Mas, G. Ioele, F. Oliverio, G. Ragno, R. Tauler, Int. J. Pharm. 386 (2010) 99.
[30]    M. Bahram, S. Mojarrad, M. Moghtader, J. Iran. Chem. Soc. 15 (2018) 779.
[31]    J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst. 76 (2005) 101.
[32]    M. Bahram, R. Bro, Anal. Chim. Acta 584 (2007) 397.
[33]    J. Jaumot, A de Juan, R. Tauler, Chemom. Intell. Lab. Syst. 140 (2015) 1.
[34]    R. Tauler, B. Walczak, Comprehensive Chemometrics, Elsevier, Netherlands, 2009.
[35]    M. Garrido, F.X. Rius, M.S. Larrechi, Anal. Bioanal. Chem. 390 (2008) 2059.
[36]    R. Tauler, A. Smilde, B. Kowalski, J. Chemom. 9 (1995) 31.
[37]    R. Tauler, E. Casassas, J. Chemom. 3 (1989) 151.
[38]    R. Tauler, M. Maeder, A. de Juan, Comprehensive Chemometrics, Elsevier, 2009.
[39]    V. Bogdándi, G. Lente, I. Fábián, RSC Adv. 5 (2015) 67800.
[40]    J. Oakes, P. Gratton, I. Wilkes, T. Gordon-Smith, Color. Technol. 117 (2001) 76.
[41]    J.L. Acero, E. Rodriguez, J. Meriluoto, Water. Res. 39 (2005) 1628.
[42]    W. Windig, J. Guilment, Anal. Chem. 63 (1991) 1425.
[43]    X. Zhang, A. de Juan, R. Tauler, Talanta 146 (2016) 1.
[44]    R. Tauler, Chemom. Intell. Lab. Syst. 30 (1995) 133.
[45]    R. Manne, Chemom. Intell. Lab. Syst. 27 (1995) 89.