Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

Document Type: Research Paper

Authors

1 Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran

2 Chemistry Department, Shiraz University

Abstract

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the enantioselective interaction between the chiral surface of the electrode and naproxen (NAP) enantiomers. The L-Cys/RGO/GCE was found to be successfully enantioselective toward sensing S-NAP in the presence of R-NAP. The linear dynamic range was found to be 5.0×10−6–1.3×10−4 mol L−1 for both naproxen enantiomers with detection limits of 3.5×10−7 and 2.5×10−6 mol L−1 for S- and R-NAP, respectively. This study shows development of an excellent enantioselective sensor constructed based on L-Cys/RGO/GCE for recognition naproxen enantiomers. The modified electrode could be used successfully for the determination of one naproxen enantiomer in the presence of the other.

Keywords


[1]       Q. Shen, L. Wang, H. Zhou, H.D. Jiang, L.S. Yu, S. Zeng, Acta Pharm. Sin. B 34 (2013) 998.

[2]       S. Corderí, C.R. Vitasari, M. Gramblicka, T. Giard, B. Schuur, Org. Process Res. Dev. 20 (2016) 297.

[3]       S.M. Xie, J.H. Zhang, N. Fu, B.J. Wang, L. Chen, L.M. Yuan, Anal. Chim. Acta 903 (2016) 156.

[4]       S. Yu, L. Pu, Adv. Chem. 2014 (2014) 14.

[5]       P. Damiani, M. Bearzotti, M.A. Cabezón, J. Pharm. Biomed. Anal. 29 (2002) 229.

[6]       T. Sohajda, Z. Szakács, L. Szente, B. Noszál, S. Béni, Electrophoresis 33 (2012) 1458.

[7]       Y. Liu, Q. Zhang, Y. Chen, J. Phys. Chem. B 111 (2007) 12211.

[8]       M. Zhang, B.C. Ye, Anal. Chem. 83 (2011) 1504.

[9]       Z. Li, Z. Mo, S. Meng, H. Gao, X. Niu, R. Guo, Anal. Methods 8 (2016) 8134.

[10]    L. Bao, J. Dai, L. Yang, J. Ma, Y. Tao, L. Deng, Y. Kong, J. Electrochem. Soc., 162 (2015) H486.

[11]    A. Afkhami, F. Kafrashi, M. Ahmadi, T. Madrakian, RSC Adv. 5 (2015) 58609.

 

 

[12]    Y.L. Xu, Z.S. Liu, H.F. Wang, C. Yan, R.Y. Gao,  Electrophoresis 26 (2005) 804.

[13]    L. Guo, Y. Huang, Q. Zhang, C. Chen, D. Guo, Y. Chen, Y. Fu, J. Electrochem. Soc. 161 (2014) B70.

[14]    C. Xiang, G. Liu, S. Kang, X. Guo, B. Yao, W. Weng, Q. Zeng, J. Chromatogr. 1218 (2011) 8718.

[15]    D. Saini, R. Chauhan, P.R. Solanki, T. Basu, ISRN Nanotechnol. 2012 (2012) Article ID 102543, 12 pages.

[16]    M. Jafari, J. Tashkhourian, G. Absalan, J. Iran. Chem. Soc. 14 (2017) 1253.

[17]    W. Feng, C. Liu, S. Lu, C. Zhang, X. Zhu, Y. Liang, J. Nan, Microchim. Acta 181 (2014) 501.

[18]    G. Wang, H. Huang, G. Zhang, X. Zhang, B. Fang, L. Wang, Anal. Methods 2 (2010) 1692.

[19]    F. Yang, N. Kong, X.A. Conlan, H. Wang, C.J. Barrow, F. Yan, J. Guo, W. Yang, Electrochim. Acta 237 (2017) 22.

[20]    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.

[21]    D. Chen, L. Tang, J. Li, Chem. Soc. Rev. 39 (2010) 3157.

[22]    S.-J. Li, D. -H. Deng, Q. Shi, S.-R. Liu, Microchim. Acta177 (2012) 325.

[23]    R. Nie, X. Bo, H. Wang, L. Zeng, L. Guo, Electrochem. Commun. 27 (2013) 112.

[24]    C. Fu, G. Zhao, H. Zhang, S. Li, Int. J. Electrochem. Sci. 8 (2013) 6269.

[25]    Y. Xue, H. Zhao, Z. Wu, X. Li, Y. He, Z. Yuan, Biosens. Bioelectron. 29 (2011) 102.

[26]    S. Peng, X. Fan, S. Li, J. Zhang, J. Chil. Chem. Soc., 58 (2013) 2213.

[27]    S. Verma, H.P. Mungse, N. Kumar, S. Choudhary, S.L. Jain, B. Sain, O.P. Khatri, Chem. Commun. 47 (2011) 12673.

[28]    W. Chengyin, G. Jun, Q. Qishu, Y. Gongjun, H. Xiaoya, Comb. Chem. High Throughput Screen. 10 (2007) 595.

[29]    S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang,  Anal. Biochem. 339 (2005) 29.

[30]    T.R. Ralph, M.L. Hitchman, J.P. Millington, F.C. Walsh, J. Electroanal. Chem. 375 (1994) 1.

[31]    N. Spãtaru, B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Anal. Chem. 73 (2001) 514.

 

 

[32]    Q. Cheng, Z. Chen, Int. J. Electrochem. Sci. 8 (2013) 8282.

[33]    N.   Mahato,   M.M.  Singh,  Portugaliae  Electrochim.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acta 29 (2011) 233.

[34]    L. Zhang, M. Song, Q. Tian, S. Min, Sep. Purif. Technol. 55 (2007) 388.