DMOF-1 Assessment and Preparation to Electrochemically Determine Hydrazine in Different Water Samples

Document Type: Research Paper

Authors

1 Department of Basic Sciences, School of Medicine Bam University of Medical Sciences

2 NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran

3 Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran

4 Department of Chemistry, Faculty of Science, Qom University, Qom, Iran

5 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

Abstract

Hydrazine has been identified as a carcinogenic mutagenic, hepatotoxic, and neurotoxin material.
A metal-organic framework with tetragonal symmetry, DMOF-1 (Zn2(bdc)2dabco) was synthesized by a versatile and facile technique, followed by its efficient development and validation as hydrazine electrochemical sensor. Differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and cyclic voltammetry (CV) techniques were used as diagnostic techniques. In this study, scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the MOF. In the electro-oxidation of hydrazine, there was a highly catalytic activity shown by the modified electrode. In addition, there was a greater signal response, compared to the unmodified electrode, which was primarily because DMOF-1 offered the establishment of large active surface area. Also, the detection limit for hydrazine, linear range, and sensor sensitivity were reported to be 0.02 µM, 0.09-400.0 µM, and 0.0863 µA/µM-1, respectively. Ultimately, the amplified sensor was able to properly analyze hydrazine in different samples of water.

Keywords


[1]       T. Rębiś, M. Sobkowiak, G. Milczarek, J. Electroanal. Chem. 780 (2016) 257.

[2]       H. Hamidi, S. Bozorgzadeh, B. Haghighi, Microchim. Acta 184 (2017) 4537.

[3]       H. Mahmoudi-Moghaddam,  H. Beitollahi,  S. Tajik, I.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sheikhshoaie, P. Biparva, Environ. Monit. Assess. 187 (2015) 407.

[4]       C. Saengsookwaow, R. Rangkupan, O. Chailapakul, N. Rodthongkum, Sens. Actuators B Chem. 227 (2016) 524.

[5]       M. Faisal, F.A. Harraz, A.E. Al-Salami, S.A. Al- Sayari, A. Al-Hajry, M.S. Al-Assiri, Mater. Chem. Phys. 214 (2018) 126.

[6]       A. Kalaivani, S.S. Narayanan, J. Mater. Sci.-Mater El. 29 (2018) 20146.

[7]       A.D. Smolenkov, O.A. Shpigun, Talanta 102 (2012) 93.

[8]       W. Siangproh, O. Chailapakul, R. Laocharoensuk, J. Wang. Talanta 67 (2005) 903.

 

 

[9]       A. Safavi, M.A. Karimi, Talanta 58 (2002) 785.

[10]    P. Ortega-Barrales, A. Molina-Díaz, M.I. Pascual-Reguera, L.F. Capitán-Vallvey, Anal. Chim. Acta 353 (1997) 115.

[11]    J.A. Oh, J.H.Park, H.S. Shin, Anal. Chim. Acta 769 (2013) 79.

[12]    K. Ghanbari, Synth. Met. 195 (2014) 234.

[13]    S. Esfandiari-Baghbamidi, H. Beitollahi, S. Tajik, Anal. Bioanal. Electrochem. 6 (2014) 634.

[14]    M. Afshari, M. Dinari, M.M. Momeni, J. Electroanal. Chem. 833 (2019) 9.

[15]     M. Hosseini-Ghalehno, M. Mirzaei, M. Torkzadeh-Mahani, Microchim. Acta 185 (2018) 165.

[16]    S.Z. Mohammadi, H. Beitollahi, S. Tajik, Micro. Nano. Sys. Lett. 6 (2018) 9.

[17]    D.W. Li, Y.T. Li, W. Song, Y.T. Long. Anal. Methods 2 (2010) 837.

[18]    J. Yang, J.H. Yu, J.R. Strickler, W.J. Chang, S. Gunasekaran, Biosens. Bioelectron. 47 (2013) 530.

[19]    H. Beitollahi, Z. Dourandish, S. Tajik, M.R. Ganjali, P. Norouzi, F. Faridbod, J. Rare Earths. 36 (2018) 750.

[20]    B. Rafiee, A.R. Fakhari, Biosens. Bioelectron. 46 (2013) 130.

[21]    S. Frutos-Puerto, C. Miró, E. Pinilla-Gil, Sensors 19 (2019) 279.

[22]    S. Esfandiari-Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Int. J. Electrochem. Sci. 11 (2016) 10874.

[23]    A. Özcan, D. Topçuoğulları, A.A. Özcan, Sens. Actuators B Chem. 284 (2019) 179.

[24]    M.M. Motaghi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Int. J. Electrochem. Sci. 11 (2016) 7849.

[25]    Y. Wei, A. Wang, Y. Liu, Russ. J. Electrochem. 54 (2018) 1141.

[26]    K.F. Chan, N.H. Lim, N. Shams, S. Jayabal, A. Pandikumar, N.H. Huang, Mater. Sci. Eng. C 58 (2016) 666.

[27]    B. Rafiee, A.R. Fakhari, M. Ghaffarzadeh, Sens. Actuators B Chem. 218 (2015) 271.

[28]    M.R. Ganjali, H. Beitollahi, R. Zaimbashi, S. Tajik, M. Rezapour, B. Larijani, Int. J. Electrochem. Sci. 13 (2018) 2519.

[29]    M.L. Yola, T. Eren, N. Atar, Sens. Actuators B Chem.

 

 

210 (2015) 149.

[30]    A.H. Touny, R.H. Tammam, M.M. Saleh, Appl. Catal. B-Environ. 224 (2018) 1017.

[31]    H. Soltani, H. Beitollahi, A.H. Hatefi-Mehrjardi, S. Tajik, M. Torkzadeh-Mahani, Anal. Bioanal. Electrochem. 6 (2014) 67.

[32]    T. Alizadeh, M.R. Ganjali, M. Akhoundian, P. Norouzi, Microchim. Acta 183 (2016) 1123.

[33]    A. Pahlavan, N. Rezanejad, H. Karimi-Maleh, M.R. Jamali, M. Abbasghorbani, H. Beitollahi, N. Atar, Int. J. Electrochem. Sci. 10 (2015) 3644.

[34]    L. Wang, R. Yang, J. Li, L. Qu, P.D.B. Harrington, Sens. Actuators B Chem. 215 (2015) 181.

[35]    M.R. Ganjali, Z. Dourandish, H. Beitollahi, S. Tajik, L. Hajiaghababaei, B. Larijani, Int. J. Electrochem. Sci. 13 (2018) 2448.

[36]    M.R. Akanda, M. Sohail, M.A. Aziz, A.N. Kawde, Electroanalysis 28 (2016) 408.

[37]    H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Food Chem. 286 (2019) 191.

[38]    X. Hou, G. Shen, L. Meng, L. Zhu, M. Guo, Russ. J. Electrochem. 47 (2011) 1262.

[39]    M.R. Ganjali, H. Salimi, S. Tajik, H. Beitollahi, M. Rezapour, B. Larijani, Int. J. Electrochem. Sci. 12 (2017) 5243.

[40]    X.L. Jiang, R. Li, J. Li, X. He, Russ. J. Electrochem. 45 (2009) 772.

[41]    H. Beitollahi, S. Tajik, Environ. Monit Assess. 187 (2015) 257.

[42]    M. Xu, M. Ma, Y. Ma, Russ. J. Electrochem. 48 (2012) 489.

[43]    M. Peksa, J. Lang, F. Stallmach, Microporous Mesoporous Mater. 205 (2015) 11.

[44]    Y. Li, C. Huangfu, H. Du, W. Liu, Y. Li, J. Ye, J. Electroanal. Chem. 709 (2013) 65.

[45]    H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, Biosens. Bioelectron. 42 (2013) 426.

[46]    L. Liu, Y. Zhou, S. Liu, M. Xu, Chem. ElectroChem. 5 (2018) 6.

[47]    A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications. Wiley, New York, 2001.

[48]    N.  Motakef-Kazemi, S.A. Shojaosadati, A. Morsali, J.

 

 

Iran. Chem. Soc. 13 (2016) 1205.

[49]    O. Shekhah, Materials 3 (2010) 1302.

[50]    Q.  Chen,  X. Li, X. Min, D. Cheng, J. Zhou, Y. Li,  Z.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xie, P. Liu, W. Cai, C. Zhang, J. Electroanal. Chem. 789 (2017) 114.