A New Dispersive Liquid-Liquid Microextraction Method Followed by Direct GF-AAS Determination Optimized with Experimental Design and Response Surface Methodology for Determination of Ag(I) in Water Samples

Document Type: Research Paper

Authors

1 Department of Chemistry, Lorestan University, Khoramabad, Iran

2 1-Department of Chemistry, Lorestan University, Khoramabad, Iran 2-Department of Chemistry, Faculty of Basic Science, Islamic Azad University, Shahreza, Iran

Abstract

In this research, a rapid, reliable and selective dispersive liquid-liquid microextraction (DLLME) followed by direct injection of microdroplet to graphite furnace atomic absorption spectrometry (GF-AAS) method for the determination of ultra-trace amounts of Ag(I) was developed. Effect of the important experimental parameters on the extraction efficiency of Ag(I) was investigated using response surface methodology (RSM) by performing a central composite design (CCD). A newly synthesized Calixarene (mesotetraspirocyclohexylcalix[4]pyrrole, TSCC4P) was utilized as the chelating agent. The optimal experimental condition was obtained as sample volume: 5 ml, dispersive solvent type: methanol, dispersive solvent volume: 715 μl, extracting solvent: 1,2-dichlorobenzene, volume of extracting solvent: 25 µl, amount of TSCC4P: 127.1 µg, and pH of sample solution: 6.5. Under the optimum conditions Ag(I) ions were extracted into a fine sedimented microdroplet, which 10 µl of it was directly injected into GF-AAS system. The calibration graph was linear over the range of 0.1-10.0 ng ml-1 with a detection limit (S/N = 3) of 0.02 ng ml-1. The relative standard deviation (RSD%) for ten replicated determinations of 10 ng ml-1 Ag(I) was 3.1%. The enrichment factor and extraction recovery were found to be 292 and 96%, respectively. The proposed DLLME-GF-AAS method was successfully applied to the extraction and determination of Ag(I) ions in different real water samples.

Keywords


[1] D.H. Macartney, J. Am. Chem. Soc. 130 (2008) 10032.
[2] L. Mutihac, J.H. Lee, J.S. Kim, J. Vicens, Chem. Soc. Rev. 40 (2011) 2777.
[3] D. Raut, P. Mohapatra, S. Ansari, A. Sarkar, V. Manchanda, Desalination 232 (2008) 262.
[4] S. Chen, R.D. Webster, C. Talotta, F. Troisi, C. Gaeta, P. Neri, Electrochim. Acta 55 (2010) 7036.
[5] A.R. Ghiasvand, F. Moradi, H. Sharghi, A.R. Hasaninejad, Anal. Sci. 21 (2005) 387.
[6] S. Erdemir, M. Yilmaz, Talanta 82 (2010) 1240.
[7] R. Ludwig, Fresen. J. Anal. Chem. 367 (2000) 103.
[8] P.A. Gale, P. Anzenbacher Jr, J.L. Sessler, Coord. Chem. Rev. 222 (2001) 57.
[9] W.E. Allen, P.A. Gale, C.T. Brown, V.M. Lynch, J.L. Sessler, JACS 118 (1996) 12471.
[10] P. Anzenbacher Jr, K. Jursíková, V.M. Lynch, P.A. Gale, J.L. Sessler, JACS 121 (1999) 11020-11021.
[11] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Elsevier, 1998.
[12] V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145 (2009) 83.
[13] P. Jain, T. Pradeep, Biotechnol. Bioeng. 90 (2005) 59.
[14] M. Constantin, Geostand. Geoanal. Res. 33 (2009) 115.
[15] M. Shamsipur, O.R. Hashemi, M. Salavati‐Niasari, Sep. Sci. Technol. 42 (2007) 567.
[16] S. Saeki, M. Kubota, T. Asami, Water Air Soil Pollut. 83 (1995) 253.
[17] M. Hoenig, Talanta 54 (2001) 1021.
[18] O. Ortet, A.P. Paiva, Sep. Sci. Technol. 45 (2010) 1130.
[19] A.A. Hill, R.J. Lipert, M.D. Porter, Talanta 80 (2010) 1606.
[20] H.J. Yang, H. Kim, C.Y. Guo, CLEAN-Soil Air Water 38 (2010) 159.
[21] W. Wang, H.J. Yang, J. Hu, C.Y. Guo, J. Supercrit. Fluids 51 (2009) 181.
[22] J. Sunarso, S. Ismadji, J. Hazard. Mater. 161 (2009) 1.
[23] R.A. Kumbasar, J. Hazard. Mater. 178 (2010) 875.
[24] S. Altin, Y. Yildirim, A. Altin, Hydrometallurgy 103 (2010) 144.
[25] L. Ramos, J. Ramos, U.A.T. Brinkman, Anal. Bioanal. Chem. 381 (2005) 119.
[26] M.A. Jeannot, F.F. Cantwell, Anal. Chem. 68 (1996) 2236.
[27] M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116 (2006) 1.
[28] A.V. Herrera-Herrera, M. Asensio-Ramos, J. Hernández-Borges, M.Á. Rodríguez-Delgado, TrAC, Trend. Anal. Chem. 29 (2010) 728.
[29] S. Thiollet, C. Bessant, S.L. Morgan, Anal. Biochem. 414 (2011) 23.
[30] J. Cheng, Y. Zhou, M. Zuo, L. Dai, X. Guo, Int. J. Environ. Anal. Chem. 90 (2010) 845.
[31] X. Mao, H. Chen, J. Liu, Microchem. J. 59 (1998) 383.
[32] C.T. Camagong, T. Honjo, Anal. Bioanal. Chem. 373 (2002) 856.
[33] C.K. Christou, A.N. Anthemidis, Talanta 78 (2009) 144.
[34] M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, A. Najibi, M. Soylak, J. Hazard. Mater. 168 (2009) 1022.
[35] S.Z. Mohammadi, D. Afzali, M.A. Taher, Y.M. Baghelani, Talanta 80 (2009) 875.
[36] M. Tuzen, M. Soylak, J. Hazard. Mater. 164 (2009) 1428.
[37] Y. Gao, P. Wu, W. Li, Y. Xuan, X. Hou, Talanta 81 (2010) 586.
[38] P. Liang, L. Peng, Microchim. Acta 168 (2010) 45.
[39] P. Liang, L. Zhang, E. Zhao, Talanta 82 (2010) 993.
[40] D. Afzali, A.R. Mohadesi, B.B. Jahromi, M. Falahnejad, Anal. Chim. Acta 684 (2011) 54.
[41] A.N. Anthemidis, K.-I.G. Ioannou, Talanta 84 (2011) 1215.
[42] L. Kocúrová, I.S. Balogh, L. Nagy, F. Billes, A. Simon, V. Andruch, Microchem. J. 99 (2011) 514.