Optimization of Trace Metal Ion Binding Properties of a Novel Schiff Base Using Response Surface Methodology

Document Type : Research Paper


Department of Industrial Chemistry, Ebonyi State University, Abakaliki, Nigeria


In this study, solvent extraction technique combined with response surface methodology (RSM) applying Box-Behnken design was applied to study the uptake of metal ions from aqueous solutions using H2BMPDE. The extractions were monitored based on the process variables of time, temperature and concentration of hydrochloric acid, metal ions and H2BMPDE. The metal ions binding properties of H2BMPDE optimized using RSM models for all the metal ions indicated estimated extraction percentage of ˃99%. The predicted and experimental values under the same conditions, showed less than 5% difference thereby making the Box- Behnken design approach an efficient, effective and reliable method for the uptake of metal ions from aqueous solution with H2BMPDE by solvent extraction technique. The novel Schiff base (H2BMPDE) synthesized was characterized using common physicochemical techniques of UV-vis, FT-IR, elemental analysis, GC-MS and NMR spectral data. The result obtained indicated that the process could be applied in the removal of metal ions from environmental samples such as soil, industrial waste water and acid mine sites.


[1]       R.D. Jones, D.A. Summerville, F. Basolo, Chem. Rev. 79 (1979) 139.
[2]       K. Brodowska, E. Lodyga-Chruscinska, Chemik 68 (2014) 129.
[3]       A.  Bilgin,  S. Cetintas,  E. Cerrahoglu,  U.  Yildiz,  D.
Bingol, Separation Science and Technology 51 (2016) 2138.
[4]       T. Katsuki, Chem Lett. 124 (2006) 1.
[5]       C. Baleiza, H. Garcia, Chem. Rev. 106 (2006) 3987.
[6]       F.J. Alguacil, M. Alonso, Rev. Metal Madrid. 35 (1999) 190.
[7]       C.R.T. Tarley, G. Silveria, W.N.L. Santos dos, G.D. Matos, E.G.P. da Silva, M.A. Bezerra, M. Miró, S.L.C. Ferreira,  Microchem. J. 92 (2009) 58.
[8]       M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta 76 (2008) 965.
[9]       D. Bingöl, Fresenius Environ. Bull. 20 (2011) 2704.
[10]    D. Bingöl, M. Hercan, S. Elevli, E. Kilic, Bioresource Technol.112 (2012) 111.
[11]    S.L.C. Ferreira, M.G.A. Korn, H.S. Ferreira, E.G.P. da Silva, R.G.O. Araújo, A.S. Souza, S.M. Macedo, D.C. Lima, R.M. de Jesus, Appl. Spectroscopy Rev. 42 (2007) 475.
[12]    D. Bingol, S. Karayunlu Bozbas, Spectroscopy Lett. 45 (2012) 324.
[13]    D. Martínez-Fernandez, D. Bingol, M. Komarek, J. Hazard. Mater. 276 (2014) 271.
[14]    N. Tekin, A. Safakli, D. Bingol, Desalination and Water Treatment 54 (2015) 2023.
[15]    L. Trakal, D. Bingol, M. Pohorely, M. Hruska, M. Komarek, Bioresource Technology 171 (2014) 442.
[16]    Y.Y. Zhang, J.H. Liu, Chem. Biochem. Eng. Q. 25 (2011) 75.
[17]    C.A. Di Tusa, K.A. McCall, T. Chritensen, M. Mahapatro, C. Fierke, E.J. Toone, Biochemistry 40 (2001) 5345.
[18]    M. Ali, J. Chin. Chem. Soc. 55 (2008) 369.
[19]    F.S. Nworie, F.I. Nwabue, J. John, Res. J. Chem. Sci. 5 (2015) 92.
[20]    S. Yang, H. Kon, H. Wang, K. Chang, J. Wang, New. J. Chem. 34 (2010) 313.
[21]    A.A.A. Emara, A.M. Ali, A.F. El-Asmy, E.M. Ragab, J. Saudi Chem. Soc. 18 (2011) 762.
[22]    P. Gluvchinsky, G.M.  Mocler,   Spectrochim. Acta A 33 (1977) 1073.
[23]    W. Al Zoubi, F. Kandil, M.K. Chebani, Arab. J. Chem. 48 (2013) 501.
[24]    F. Kandil, W. Al Zoubi, M.K. Chebani, Separation Sci. Technol. 47 (2012) 1754.
[25]    S. Samal, S. Acharya, R.K. Dey, A Ray, Talanta 57 (2002) 1075.
[26]    K. Dev, G.N. Rao, Talanta 43 (1996) 451.
[27]    K. Dev, G.N. Rao, Analyst 120 (1995) 2509
[28]    A.A. Atia, A.M. Donia, A.S. Abou-El-Enein, A.M. Yousif, Separation and Purification Technology 33 (2003) 295.
[29]    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th Ed., Wiley New York,1999, pp.200
[30]    R.A.A. Ammar, M.A. Alaghaz, Abdel-Nasser, Int. J. Electrochem. Sci. 8 (2013) 8686.