Facile Synthesis of MIL-53(Fe) by Microwave Irradiation and its Application for Robust Removal of Heavy Metals from Aqueous Solution by Experimental Design Approach: Kinetic and Equilibrium

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran. Young Researchers Society, Shahid Bahonar University, Kerman, Iran

2 Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University. Nanotechnology Research Institute, Shiraz University

3 Department of Chemistry, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran

Abstract

MIL-53(Fe) with huge porosity has been synthesized by microwave radiation in the different ‎conditions: various powers (80, 100W) and time (5, 10 min). Nano-sized crystals were ‎characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier ‎transform infrared spectroscopy (FTIR) and specific surface area analysis. After performing the characterization, MIL-53(Fe)-1 with the best porous structure for Pb (II) and Cd (II)‎ removal was used for all tests from aqueous solution. The best condition for synthesis was 5 min and 80 W. Then the best porous structure was selected for removal of Pb (II) / Cd (II) from aqueous solution. The ‎response surface methodology (RSM) based on central composite design (CCD) was applied to ‎optimize the removal capacity. In these experimental designs, four independent variables were studied and the best condition was evaluated as ‎‎pH(in the range of 6-8), temperature (40-50◦C), contact time (50 min), and adsorbent amount (0.1-0.3 g.L-1). The removal efficiency and ‎capacity of MIL-53(Fe) for Pb (II) and Cd (II) was further surveyed. Langmuir equation was the ‎best isotherm to describe the adsorption manner of Pb (II) and Cd (II) ions (qmax values ( 178.57 and 714.28 mg g−1) for Pb (II) and Cd (II)). The adsorption ‎process was confirmed by a pseudo-second-order kinetic pattern. The result of thermodynamic ‎studies displayed that the sorption process was spontaneous and exothermal.

Keywords


[1]       M. Kilic, C. Kirbiyik, O. Cepeliogullar, A.E. Putun, Appl. Surf. Sci. 283 (2013) 856.
[2]       H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Appl. Surf. Sci. 279 (2013) 432.
[3]       Y. Liu, X. Sun, B. Li, Carbohyd. Polym. 81 (2010) 335.
[4]       M. Naushad, Chem. Eng. J. 235 (2014) 100.
[5]       S.A. Kim, S. Kamala-Kannan, K.J. Lee, Y.J. Park, P.J. Shea, W.H. Lee, H.M. Kim, B.T. Oh, Chem. Eng. J. 217 (2013) 54.
[6]       H. Dogan, Toxicol. Environ. Chem. 94 (2012) 482.
[7]       V. Gupta, M. Gupta, S. Sharma, Water Res. 35 (2001) 1125.
[8]       M.T. Alvarez, C. Crespo, B. Mattiasson, Chemosphere 66 (2007) 1677.
[9]       S. Bhattacharjee, S. Chakrabarty, S. Maity, S. Kar, P. Thakur, G. Bhattacharyya, Water Res. 37 (2003) 3954.
[10]    Y. Hashimoto, T. Sato, Chemosphere 69 (2007) 1775.
[11]    I.S. Ismael, A. Melegy, T. Kratochvil, Geotech. Geol. Eng. 30 (2012) 253.
[12]    M. Kragovic, A. Dakovic, Z. Sekulic, M. Trgo, M. Ugrina, J. Peric, G. Diego, Appl. Surf. Sci. 283 (2013) 764.
[13]    T. Madrakian, A. Afkhami, M. Ahmadi, Chemosphere
 
 
90 (2013) 542.
[14]    R. Naseems, S.S. Tahir, Water Res. 35 (2001) 3982.
[15]    Q. He, D. Yang, X. Deng, Q. Wuc, R. Li, Y. Zhai, L. Zhang, Water Res. 47 (2013) 3976.
[16]    D.S. Dlamini, A.K. Mishra, B.B. Mamba, J. Appl. Pol. Sci. 22 (2011) 342.
[17]    S.H. Abdel-Halim, A.M.A. Shehata, M.F. El-Shahat, Water Res. 37 (2003) 1678.
[18]    K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Chemosphere 50 (2003) 23.
[19]    H.A. Kim, K.Y. Lee, B.T. Lee, S.O. Kim, K.W. Kim, Water Res. 46 (2012) 5591.
[20]    E. Saifullah, M. Meers, P. Qadir, F.M.G. de Caritat, G. Tack, D. Laing, M.H. Zia, Chemosphere 74 (2009) 1279.
[21]    Ch. Liua, R. Baib, Q.S. Lya, Water Res. 42 (2008) 1511.
[22]    X. Zhang, Sh. Lin, Z. Chen, M. Megharaj, R. Naidu, Water Res. 45 (2011) 3481.
[23]    D. Peixin, W. Huaxian, S. Hongjuan, Non-Metallic Mines 35 (2012) 57.
[24]    P. Srivastava, B. Singh, M. Angove, J. Colloid Interface Sci. 290 (2005) 28.
[25]    E. Erdem, N. Karapinar, R. Donat, J. Colloid Interface Sci. 280 (2004) 309.
[26]    T.S. Jamil, H.S. Ibrahim, I.H. Abd El-Maksoud, S.T. El-Wakeel, Desalination 258 (2010) 34.
[27]    Y. Tan, M. Chen, Y. Hao, Chem. Eng. J. 191 (2012) 104.
[28]    M. Machida, B. Fotoohi, Y. Amamo, L. Mercier, Appl. Surf. Sci. 258 (2012) 7389.
[29]    S.F. Lo, S.Y. Wang, M.J. Tsai, L.D. Lin, Chem. Eng. Res. Des. 90 (2012) 1397.
[30]    D.T.C. Nguyen, H.T.N. Le, T.S. Do, V.T. Pham, D.L. Tran, V.T.T. Ho, T.V. Tran, D.C. Nguyen, T.D. Nguyen, L.G. Bach, H.K.P. Ha, V.T. Doan, J. Chem. https://doi.org/10.1155/2019/5602957.
[31]    M. Ghanbarian, S. Zeinali, A. Mostafavi, Sens. Actuators B 267 (2018) 381.
[32]    K. Sanderson,.Nature 448 (2007) 746.
[33]    T.V. Tran, D.T.C. Nguyen, H.T.N. Le, T.T.K. Tu, N.D. Le, K.T. Lim, L.G. Bach, T.D. Nguyen, J. Environ. Chem. Eng. 7 (2019) 102881.
[34]    G.  Antek, W.F.  Adam,  J.  Matzger,  O.M.  Yaghi,  J.
 
 
Am. Chem. Soc. 128 (2006) 3494.
[35]    Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun, J.S. Chang, Microporous Mesoporous Mater. 119 (2009) 331.
[36]    J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Microporous Mesoporous Mater. 116 (2008) 727.
[37]    W.J. Son, J. Kim, J. Kim, W.S. Ahn, Chem. Commun. 47 (2008) 6336.
[38]    Z.Q. Li, L.G. Qiu, T. Xu, Y. Wu, W. Wang, Z.Y. Wu, X. Jiang, Mater. Lett. 63 (2009) 78.
[39]    R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, D.E. DeVos, Chem. Mater. 21 (2009) 2580.
[40]    S. Palaniandy, K.A.M. Azizli, Int. J. Miner. Process 92 (2009) 22.
[41]    P. Amo-Ochoa, G. Givaja, P.J.S. Miguel, O. Castillo, F. Zamora, Inorg. Chem. Commun. 10 (2007) 921.
[42]    W. Liu, L. Ye, X. Liu, L. Yuan, X. Lu, J. Jiang, Inorg. Chem. Commun. 11 (2008) 1250.
[43]    Y. Yoo, Z. Lai, H.K. Jeong, Microporous Mesoporous Mater. 123 (2009) 100.
[44]    C. Leonelli, T.J. Mason, Chem. Eng. Process. Process Intensif. 49 (2010) 885.
[45]    A. De La Hoz, Á. Díaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34 (2005) 164.
[46]    G. Férey, Chem. Soc. Rev. 37 (2008) 191.
[47]    C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Férey, J. Am. Chem. Soc. 124 (2002) 13519.
[48]    F. Millange, N. Guillou, R.I. Walton, J.M. Greneche, I. Margiolaki, G. Férey, Chem. Commun. (2008) 4732.
[49]    J.P.S. Mowat, S.R. Miller, A.M.Z. Slawin, V.R. Seymour, S.E. Ashbrook, P.A. Wright, Microporous Mesoporous Mater. 142 (2011) 322.
[50]    T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, Chem. Eur. J. 10 (2004) 1373.
[51]    C. Volkringer, T. Loiseau, N. Guillou, G. Férey, E. Elkaim, A. Vimont, Dalton Trans. (2009) 2241.
[52]    S. Heydari, M. Hosseinpour Zaryabi, H. Ghiassi, Anal. Bioanal. Chem. Res. 6 (2019) 271.
[53]    T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey,  Chem.  Eur.
 
 
J. 10 (2004) 1373.
[54]    T.R. Whitfield, X. Wang, L. Liu, A.J. Jacobson, Solid State Sci. 7 (2005) 1096.
[55]    L. Peng, J. Zhang, J. Li, B. Han, Z. Xue, G. Yang, Chem. Commun. 48 (2012) 8688.
[56]   P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, J. Am.Chem. Soc. 130 (2008) 6774.
[57]   T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.M. Greneche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.C. Lavalley, M. Daturi, G. Ferey, J. Am. Chem. Soc. 132 (2010) 1127.
[58]    A. Banerjee, R. Gokhale, S. Bhatnagar, J. Jog, M. Bhardwaj, B. Lefez, B. Hannoyer, S. Ogale, J. Mater. Chem. 22 (2012) 19694.
[59]    R. Fazaeli, H. Aliyanb, M. Moghadam, M. Masoudinia, J. Mol. Catal. A: Chem. 374 (2013) 46.
[60]    J. Gordon, H. Kazemian, S. Rohani, Mater. Sci. Eng. C 47 (2015) 172.
[61]    T.A. Vu, G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, Q.K. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, RSC Adv. 5 (2015) 5261.
[62]    A. Nezamzadeh-Ejhieh, M. Kabiri-Samani, J. Hazard. Mater. 260 (2013) 339.
[63]    M.A. Shavandi, Z. Haddadian, M.H.S. Ismail, N. Abdullah, Z.Z. Abidin, J. Taiwan, Inst. Chem. Eng. 43 (2012) 750.
[64]    Y. Ren, J. Ma, Chem. Eng. J. 175 (2011) 1.
[65]    Z.C. Li, H.T. Fan, Y. Zhang, M.X. Chen, Z.Y. Yu, X.Q. Cao, T. Sun, Chem. Eng. J. 171 (2011) 703.
[66]    I.H. Gubbuk, J. Hazard. Mater. 186 (2011) 416.
[67]    I.A Sengil, M. Ozacar, H. Turkmenler, J. Hazard. Mater. 162 (2009) 1046.
[68]    N.M. Mahmoodi, B. Hayati, M. Arami, J. Chem. Eng. Data 55 (2010) 4638.
[69]    J. Anwar, U. Shafique, W. Zaman, M. Salman, A. Dar, Sh. Anwar, Bioresour Technol. 101 (2010) 1752.
[70]    J. Li, X. Wang, B. Yuan, M. Fu, H. Cui, Appl. Surf. Sci. ‎320 (2014) 112.
[71]    M. Li, Z. Zhang, R. Li, J. Wang, A. Ali, Int. J. Biol. Macromol. 86 (2016) 876.
 
 
[72]    K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin, L. Kong, J. Liu, J. Colloid Interface Sci. 494 (2017) 307.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[73]    B. Guo, F. Deng, Y. Zhao, X. Luo, S. Luo, C. Au, Appl. Surf. Sci. ‎292 (2014) 438.