Voltammetric Determination of Sulfadoxine and Its Application in Pharmaceuticals and Urine Samples

Document Type : Research Paper


Karnatak University Dharwad


The voltammetric behaviour of Sulfadoxine (SDN) was studied at a glassy carbon electrode in 0.2 M phosphate buffer solutions using cyclic, differential-pulse (DPV) and square wave voltammetry (SWV). The dependence of the current on pH, concentration, and scan rate was investigated to optimize the experimental conditions for the determination of SDN. The oxidation process was shown to be diffusion controlled, irreversible over the pH range from 3.0-9.2. An analytical method was developed for the determination of SDN in phosphate buffer solution at pH 3.0 as a supporting electrolyte. A DPV method showed a good linear response as compared to SWV. The anodic peak current varied linearly with SDN concentration in the range 0.310-4.34 µg ml-1 of SDN with a limit of detection (LOD) of 0.01 µg ml-1. The recovery was determined in the range from 95.6-100.1%. The proposed method was successfully applied to the quantitative determination of SDN in pharmaceutical formulations and an urine as real samples.


[1] World Health Organisation, The World Health Report 2005 — Make Every Mother and
      Child Count, WHO.
[2] S. Peterson, J. Nsungwa-Sabiiti, W. Were, X. Nsabagasani, G. Magumba, J. Nambooze,
     G. Mukasa, Lancet 363 (2004) 1955.
[3] H. Astier, C. Renard,V. Cheminel, O. Soares , C. Mounier , F. Peyron , JF. Chaulet,
     J.Chromatogr. B:Biomed.  Sci. Appl. 698 (1997) 217.
[4] Y. Bergqvist, S. Eckerbom, H. Larsson, M. Malekzadeh, J. Chromatogr. 571 (1991) 169.

[5] P.G. Risha, D. Shewiyo, A. Msami, G. Masuki, G. Vergote, C. Vervaet, JP. Remon,

      Trop. Med. Int.  Health 7 (2002) 701.

[6] S. I. Bhoir, I. C. Bhoir, A.M. Bhagwat, M. Sundaresan, J. Chromatogr. B: Biomed. Sci.
      Appl. 757 (2001) 39.
[7] J. Ogoda Onah, J. Eromi Odeiani, J. Pharm Biomed. Anal. 30 (2002) 851.
[8] V. K. Dua, N.C. Gupta, P. Sethi, G. Edwards, A.P. Dash, J. Chromatogr. B.860 (2007)
[9] V.K. Dua, R. Sarin, V.P. Sharma, J. Pharm Biomed. Anal. 12 (1994) 1317.
[10] A. Kumar, P. Pandy, N. Mishra, S. Narad, Chem. Anal. (Warsaw) 41 (1) (1996) 121.
       Chailapakul, Talanta 123 (2014) 115.
[12] A. Nezamzadeh-Ejhieh, H.-S. Hashemi, Talanta 88 (2012) 201.
[13] Y.-T. Lai, A. Ganguly, L.-C. Chen, K.-H. Chen, Biosens.Bioelectron. 26 (2010)
[14] C. Yardimci, N. Ozaltin, Analyst126 (2001) 361.
[15] M.R. Smyth, J.G. Vos, Eds., Analytical Voltammetry, Elsevier Science Ltd.,
       Amsterdam, 1992.
[16] S.A. Ozkan, B. Uslu, Z. Senturk, Electroanal. 16 (2004) 231.
[17] P.T. Kissanger, W.R. Heineman (Eds), Laboratory Techniques in Electroanalytical
       Chemistry, 2nd Marcel Dekker, New York, 1996, p. 769.
[18] G.D.Christian, W.C. Purdy, J. Electroanal. Chem. 3 (1962) 363.
[19] B.Rezaei, S. Damiri, Sens. and Actua. B: Chemical 134 (2008) 324.
[20] D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction
       Mechanisms,VCH, New York,1993, pp.43.
[21] S. Ranganathan, T-C Kuo, R. L. McCreery, Anal. Chem. 71 (1999) 3574.
[22]B. Dogan-Topal, B. Bozal, B.T. Demircigil, B. Uslu, S.A. Ozkan, Electroanal. 21 (2009)
[23] J. Wang, Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine,
       VCH: New York, 1988, p. 31.
[24] A. J. Bard, L. R. Faulker, Electrochemical Methods, 2nd edn, Wiley,New York, 2001, p.
[25] E. Laviron, J. Electroanal. Chem. 101 (1979) 19.
[26] W. Yunhua, J. Xiaobo,  H. Shengshui, Bioelectrochem. 64 (2004) 91.
[27] R.N. Hegde, B.E. Kumara Swamy, N.P. Shetti, and S.T. Nandibewoor, J. Electroanal.
          Chem. 635 (2009) 51.