Fabrication of a Novel Phenolic Compound Biosensor Using Laccase Enzyme and Metal-organic Coordination Polymers

Document Type : Research Paper

Authors

1 Faculty of Chemistry, Razi University, Kermanshah, Iran

2 Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran. Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

Hydroquinone (HQ) sensitive electrochemical biosensing was performed using new nanocomposites of carboxylated graphene (GrCOOH) embedded in metal-organic coordination polymers (MOCPs) as efficient matrices for laccase (Lac) immobilization. GrCOOH nanosheets were used to pre-adsorb of HAuCl4 and act as anchor sites; they help to form MOCPs and more coordinate between gold ions and 4-aminothiophenol (4-ATP) ligand. According to the Tafel plot the mechanism was diffusion for HQ redox reactions on the proposed modified electrode surface and an electron process was in the rate-determining stage. It was concluded that this redox reaction was involved the same number of protons and electrons. The construction of GrCOOH-MOCPs one-pot entrapped Lac exhibited enhanced redox currents over MOCPs for HQ electrochemical oxidation and reduction and enhanced sensitivity and low detection limit (1.70 µM), being superior to other Lac biosensors. Furthermore, this biosensor was tested in real samples and demonstrated acceptable recoveries in real water samples and had good stability for one week.

Keywords


[1]           J.-M. Moon, N. Thapliyal, K.K. Hussain, R.N. Goyal, Y.-B. Shim, Biosens. Bioelectron. 102 (2018) 540.
[2]           D. O’Hare, Biosensors and Sensor Systems, Body Sensor Networks, Springer 2014, pp. 55-115.
[3]           C.S. Dzah, Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, H. Ma, Food Biosci. (2020) 100547.
[4]           S. Malinowski, C. Wardak, J. Jaroszyńska-Wolińska, P.A.F. Herbert, K. Pietrzak, J. Water Process. Eng. 34 (2020) 101150.
[5]           S.A.R. Albayati, S. Kashanian, M. Nazari, S. Rezaei, Bull. Mater. Sci. 42 (2019) 187.
[6]           M.M. Rodríguez-Delgado, G.S. Alemán-Nava, J.M. Rodríguez-Delgado, G. Dieck-Assad, S.O. Martínez-Chapa, D. Barceló, R. Parra, Trends Analyt Chem. TrAC 74 (2015) 21.
[7]           J. Quinchia, D. Echeverri, A.F. Cruz-Pacheco, M.E. Maldonado, J. Orozco, Micromachines 11 (2020) 411.
[8]           F.A. Abd Manan, W.W. Hong, J. Abdullah, N.A. Yusof, I. Ahmad, Mater. Sci. Eng. C 99 (2019) 37.
[9]           Y.  Wee,  S. Park, Y.H. Kwon, Y. Ju, K.-M.  Yeon, J.
 
 
Kim, Biosens. Bioelectron. 132 (2019) 279.
[10]        J.R. Camargo, M. Baccarin, P.A. Raymundo-Pereira, A.M. Campos, G.G. Oliveira, O. Fatibello-Filho, O.N. Oliveira Jr, B.C. Janegitz, Anal. Chim. Acta 1034 (2018) 137.
[11]        A. Kaffash, K. Rostami, H.R. Zare, Enzyme Microb. Technol. 121 (2019) 23.
[12]        C. Wu, Z. Liu, H. Sun, X. Wang, P. Xu, Biosens. Bioelectron. 79 (2016) 843.
[13]        Y. Zheng, D. Wang, Z. Li, X. Sun, T. Gao, G. Zhou, Colloids Surf. A Physicochem. Eng. Asp. 538 (2018) 202.
[14]        S.K. Patel, M.Z. Anwar, A. Kumar, S.V. Otari, R.T. Pagolu, S.-Y. Kim, I.-W. Kim, J.-K. Lee, Biochem. Eng. J. 132 (2018) 1.
[15]        S. Palanisamy, S.K. Ramaraj, S.-M. Chen, T.C. Yang, P. Yi-Fan, T.-W. Chen, V. Velusamy, S. Selvam, Sci. Rep. 7 (2017) 1.
[16]        N. Maleki, S. Kashanian, M. Nazari, N. Shahabadi, Appl. Biochem. Biotechnol. 66 (2019) 502.
[17]        M. Nazari, S. Kashanian, N. Maleki, N. Shahabadi, Bull. Mater. Sci. 42 (2019) 51.
[18]        N. Maleki, S. Kashanian, E. Maleki, M. Nazari, Biochem. Eng. J. 128 (2017) 1.
[19]        M. Nazari, S. Kashanian, R. Rafipour, Spectrochim Acta A Mol. Biomol. Spectrosc. 145 (2015) 130.
[20]        J. Su, J. Fu, Q. Wang, C. Silva, A. Cavaco-Paulo, Crit. Rev. Biotechnol. 38 (2018) 294.
[21]        Z. Li, Z. Chen, Q. Zhu, J. Song, S. Li, X. Liu, J. Hazard. Mater. 399 (2020) 123088.
[22]        A.N. Yadav, S. Singh, S. Mishra, A. Gupta, Recent Advancement in White Biotechnology Through Fungi, 2019.
[23]        R. Hilgers, J.-P. Vincken, H. Gruppen, M.A. Kabel, ACS Sustain. Chem. Eng. 6 (2018) 2037.
[24]        J. Liu, Y. Xie, C. Peng, G. Yu, J. Zhou, J. Phys. Chem. B 121 (2017) 10610.
[25]        Y. Jia, Y. Chen, J. Luo, Y. Hu, Ecotoxicol. Environ. Saf. 184 (2019) 109670.
[26]        E. Wu, Y. Li, Q. Huang, Z. Yang, A. Wei, Q. Hu, Chemosphere 233 (2019) 327.
[27]        F. Lassouane, H. Aït-Amar, S. Amrani, S. Rodriguez-Couto, Bioresour. Technol. 271 (2019) 360.
 
 
[28]        Z. Fathali, S. Rezaei, M.A. Faramarzi, M. Habibi-Rezaei, Int. J. Biol. Macromol. 122 (2019) 359.
[29]        S. HajKacem, S. Galai, F.J.H. Fernandez, A.P. de los Ríos, I. Smaali, J.Q. Medina, Appl. Biochem. Biotechnol. 190 (2020) 1.
[30]        R. Sarma, M.S. Islam, A.-F. Miller, D. Bhattacharyya, Appl. Mater. Interfaces. 9 (2017) 14858.
[31]        V. Semerdzhieva, R. Raykova, D. Marinkova, S. Yaneva, G. Chernev, J. Biosens. Bioelectron. 9 (2018) 2.
[32]        J. Gill, V. Orsat, S. Kermasha, Process Biochem. 65 (2018) 55.
[33]        J.K. Gill, V. Orsat, S. Kermasha, J. Sol-Gel Sci. Technol. 85 (2018) 657.
[34]        M. Lepore, M. Portaccio, Appl. Biochem. Biotechnol. 64 (2017) 782.
[35]        L.G. Mohtar, P. Aranda, G.A. Messina, M.A. Nazareno, S.V. Pereira, J. Raba, F.A. Bertolino, Microchem. J. 144 (2019) 13.
[36]        Y. Zhang, X. Li, D. Li, Q. Wei, Colloids Surf. B 186 (2020) 110683.
[37]        K. Biradha, A. Ramanan, J.J. Vittal, Cryst. Growth Des. 9 (2009) 2969.
[38]        H. Yang, X. Qi, X. Wang, X. Wang, Q. Wang, P. Qi, Z. Wang, X. Xu, Y. Fu, S. Yao, Anal. Chim. Acta 1005 (2018) 27.
[39]        X. Xu, X. Qi, X. Wang, X. Wang, Q. Wang, H. Yang, Y. Fu, S. Yao, Electrochem. Commun. 79 (2017) 18.
[40]        M.Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256 (2012) 2921.
[41]        X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Chem. Commun. 47 (2010) 932.
[42]        S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, X.-W. Du, J. Mater. Chem. A 19 (2009) 484.
[43]        M. Bottini, C. Balasubramanian, M.I. Dawson, A. Bergamaschi, S. Bellucci, T. Mustelin, J. Phys. Chem. B 110 (2006) 831.
[44]        Y.Y.  Yilmaz,  E.E.  Yalcinkaya,  D.O.  Demirkol, S.
 
 
 
 
 
Timur, Sens. Actuators B Chem. 307 (2020) 127665.
[45]        E.P. Cipolatti, A. Valerio, R.O. Henriques, D.E. Moritz, J.L. Ninow, D.M. Freire, E.A. Manoel, R. Fernandez-Lafuente, D. de Oliveira, RSC Adv. 6 (2016) 104675.
[46]        G. Dai, Z. Li, F. Luo, S. Ai, B. Chen, Q. Wang, Microchim. Acta 186 (2019) 620.
[47]        S. Desai, C. Nityanand, Asian J. Biotechnol. 3 (2011) 98.
[48]        J.-M. Bollag, A. Leonowicz, Appl. Environ. Microbiol. 48 (1984) 849.
[49]        M.S. Ferreira, A.F. Silva Filho, V.L. Martins, M.M. Andrade, D.A. Giarola, L.H. Dall'Antonia, Acta Sci., Technol. 37 (2015) 265.
[50]        J.E. Otto, University of South Florida, 2005.
[51]        A.J. Bard, L.R. Faulkner, Electrochemical Methods 2 (2001) 580.
[52]        M. Haghighi, M. Shahlaei, M. Irandoust, A. Hassanpour, New and Sensitive Sensor for Voltammetry Determination of Methamphetamine in Biological Samples.
[53]        H.M. Nassef, A.-E. Radi, C. O'Sullivan, Anal. Chim. Acta 583 (2007) 182.
[54]        R. Rafipour, S. Kashanian, F.A. Tarighat, Anal. Chim. Acta 8 (2014) 196.
[55]        M. Klis, J. Rogalski, R. Bilewicz, Bioelectrochemistry 71 (2007) 2.
[56]        Y. Zhang, Z. Lv, J. Zhou, Y. Fang, H. Wu, F. Xin, W. Zhang, J. Ma, N. Xu, A. He, Electroanalysis 32 (2020) 142.
[57]        I. Zrinski, K. Pungjunun, S. Martinez, J. Zavašnik, D. Stanković, K. Kalcher, E. Mehmeti, Microchem. J. 152 (2020) 104282.
[58]        X.-H. Zhou, L.-H. Liu, X. Bai, H.-C. Shi, Sens. Actuators B Chem. 181 (2013) 661.
[59]        J. Yang, D. Li, J. Fu, F. Huang, Q. Wei, J. Electroanal. Chem. 766 (2016) 16.
[60]        C. Lou, T. Jing, J. Zhou, J. Tian, Y. Zheng, C. Wang, Z. Zhao, J. Lin, H. Liu, C. Zhao, Int. J. Biol. Macromol. 149 (2020) 1130.