Enzymatic Glucose Biosensors: A Review on Recent Progress in Materials and Fabrication Techniques

Document Type : Review

Authors

1 Department of Biomedical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.

2 Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.

4 Department of Community Health Nursing, School of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran.

Abstract

In recent years, biosensors are used in various applications ranging from biomedical and pharmaceutical to food and chemical products. As an example, biosensors can be used for glucose assessment in blood and regulation of insulin usage in diabetic patients. In this regard, it is anticipated that many diseases could be diagnosed in the near future at an early stage regarding further progress in nanotechnology. The advancement in nanotechnology meets the technological requirements for the increased demand for sensors in biomedical applications. Enzymes play a significant role among various biologic elements exerted in the design of biosensors. Glucose oxidase is an enzyme and biocatalysts that accelerate the process of turning glucose to oxygenated water. Recent surveys have reported the novel qualitative and quantitative approaches used to enhance the sensitivity, detection limit, and biocompatibility of biosensors. Furthermore, they have confirmed the enhanced performance of glucose-based biosensors in both response and detection limits in their implementation. This review aims to summarize recent progress in sensitivity, selectivity, response time, and stability of the enzymatic biosensor based on the versatile fabrication of glucose by semi-permeable membranes.

Keywords


[1]           E. Burcu Aydın, M. Aydın, M. Kemal Sezgintürk. Int. J. Environ. Anal. Chem. 100 (2020) 602.
[2]           P. Fioretto, M.W. Steffes, D.E. Sutherland, F.C. Goetz, M. Mauer, N. Engl. J. Med. 339 (1998) 69.
[3]           B.R. Eggins, Chem. Sens. Biosens., Vol. 28, John Wiley & Sons, 2008.
[4]           M. Takase, E. Takahashi, M. Murata, H. Ohnuki, K. Hibi, H. Ren, H. Endo, Int. J. Environ. Anal. Chem. 93 (2013) 125.
 
 
[5]           M. Rahmani, H. Ghafoori Fard, M.T. Ahmadi, K. Rahmani. Int. J. Environ. Anal. Chem. 97 (2017) 1024.
[6]           P. Wang, H. Jia, in Bioprocessing for Value-Added Products from Renewable Resources, 2007
[7]           A.A. Karyakin, O.V. Gitelmacher, E.E. Karyakina, Anal. Chem. 67 (1995) 2419.
[8]           T. Kaku, H.I. Karan, Y. Okamoto, Anal. Chem. 66 (1994) 1231.
[9]           G.F. Khan, W. Wernet. Anal. Chem. 69 (1997) 2682.
[10]        R. Pauliukaite, A. Malinauskas, G. Zhylyak, U.E. Spichiger-Keller, Electroanalysis 19 (2007) 2491.
[11]        N. Mano, F. Mao, A. Heller, J. Electroanal. Chem. 574 (2005) 347.
[12]        M.E. Ghica, C.M. Brett, Anal. Chim. Acta 532 (2005) 145.
[13]        F. Mizutani, S. Yabuki, S. Iijima, Anal. Chim. Acta 300 (1995) 59.
[14]        Z. Sun, H. Tachikawa, Anal. Chem. 64 (1992) 1112.
[15]        T. Kondo, M. Horitani, M. Yuasa, Int. J. Electrochem. 2012 (2012) 943957.
[16]        K. Wang, J.J. Xu, H.Y. Chen, Biosens. Bioelectron. 20 (2005) 1388.
[17]        A. Salek-Maghsoudi, F. Vakhshiteh, R. Torabi, S. Hassani, M.R. Ganjali, P. Norouzi, M. Hosseini, M. Abdollahi, Biosens. Bioelectron. 99 (2018) 122.
[18]        J. Wang, Anal. Electrochem. Third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2006, pp. 165-200.
[19]        L.C. Clark Jr, C. Lyons, Ann. N. Y. Acad. Sci. 102 (1962) 29.
[20]        K.E. Toghill, R.G. Compton. Int. J. Electrochem. Sci. 5 (2010) 1246.
[21]        G. Reach, G.S. Wilson, Anal. Chem. 64 (1992) 381A.
[22]        D.A. Gough, J.Y. Lucisano, P.H. Tse, Anal. Chem. 57 (1985) 2351.
[23]        J.C. Armour, J.Y. Lucisano, B.D. McKean, D.A. Gough, Diabetes 39 (1990) 1519.
[24]        J. Wang, F. Lu, J. Am. Chem. Soc. 120 (1998) 1048.
[25]        J. Wang, J.W. Mo, S. Li, J. Porter, Anal. Chim. Acta 441 (2001) 183.
[26]        R. Kontani, S. Tsujimura, K. Kano, Bioelectrochemistry 76 (2009) 10.
[27]        F. Moussy, S. Jakeway, D.J. Harrison,  R.V.  Rajotte,
 
 
Anal. Chem. 66 (1994) 3882.
[28]        S.A. Emr, A.M. Yacynych, Electroanalysis 7 (1995) 913.
[29]        J. Li, Y. Li, Y. Zhang, G. Wei, Anal. Chem. 84 (2012) 1888.
[30]        C. Chen, Y. Fu, C. Xiang, Q. Xie, Q. Zhang, Y. Su, L. Wang, S. Yao, Biosens. Bioelectron. 24 (2009) 2726.
[31]        L. Bahshi, M. Frasconi, R. Tel-Vered, O. Yehezkeli, I. Willner, Anal. Chem. 80 (2008) 8253.
[32]        Y. Fu, P. Li, Q. Xie, X. Xu, L. Lei, C. Chen, C. Zou, W. Deng, S. Yao, Adv. Funct. Mater. 19 (2009) 1784.
[33]        S. Hrapovic, Y. Liu, K.B. Male, J.H. Luong, Anal. Chem. 76 (2004) 1083.
[34]        J. Wu, L. Yin, ACS Appl. Mater. Interfaces 3 (2011) 4354.
[35]        E.W. Stein, D.V. Volodkin, M.J. McShane, G.B. Sukhorukov, Biomacromolecules 7 (2006) 710.
[36]        Z. Wang, S. Liu, P. Wu, C. Cai, Anal. Chem. 81 (2009) 1638.
[37]        K. Wang, D. Zhang, T. Zhou, X.H. Xia, Chem. - Eur. J. 11 (2005) 1341.
[38]        A.N. Sekretaryova, D.V. Vokhmyanina, T.O. Chulanova, E.E. Karyakina, A.A. Karyakin, Anal. Chem. 84 (2012) 1220.
[39]        R. Rajagopalan, A. Aoki, A. Heller, J. Phys. Chem. C 100 (1996) 3719.
[40]        L. Zheng, J. Li, J. Xu, L. Xiong, D. Zheng, Q. Liu, W. Liu, Y. Li, S. Yang, J. Xia, Analyst 135 (2010) 1339.
[41]        C. Qin, C. Chen, Q. Xie, L. Wang, X. He, Y. Huang, Y. Zhou, F. Xie, D. Yang, S. Yao, Anal. Chim. Acta 720 (2012) 49.
[42]        C. Chen, L. Wang, Y. Tan, C. Qin, F. Xie, Y. Fu, Q. Xie, J. Chen, S. Yao, Biosens. Bioelectron.  26 (2011) 2311.
[43]        E.J. Calvo, R. Etchenique, C. Danilowicz, L. Diaz, Anal. Chem. 68 (1996) 4186.
[44]        Y. Kajiya, H. Sugai, C. Iwakura, H. Yoneyama, Anal. Chem. 63 (1991) 49.
[45]        P.D. Hale, T. Inagaki, H.I. Karan, Y. Okamoto, T.A. Skotheim, J. Am. Chem. Soc. 111 (1989) 3482.
[46]        T.J.     Ohara,   R.   Rajagopalan,   A.   Heller,   Anal.
 
 
Chem. 65 (1993) 3512.
[47]        N. Mano, J.E. Yoo, J. Tarver, Y.L. Loo, A. Heller, J. Am. Chem. Soc. 129 (2007) 7006.
[48]        W. Schuhmann, T.J. Ohara, H.L. Schmidt, A. Heller, J. Am. Chem. Soc. 113 (1991) 1394.
[49]        S. Alwarappan, S.R. Singh, S. Pillai, A. Kumar, S. Mohapatra, Anal. Lett. 45 (2012) 746.
[50]        P. Si, S. Ding, J. Yuan, X.W. Lou, D.H. Kim, ACS Nano 5 (2011) 7617.
[51]        L. Fruk, C.H. Kuo, E. Torres, C.M. Niemeyer, Angew. Chem., Int. Ed. 48 (2009) 1550.
[52]        M. Zayats, B. Willner, I. Willner, Electroanalysis 20 (2008) 583.
[53]        F. Patolsky, Y. Weizmann, I. Willner, Angew. Chem. 116 (2004) 2165.
[54]        O. Yehezkeli, S. Raichlin, R. Tel-Vered, E. Kesselman, D. Danino, I. Willner, J. Phys. Chem. Lett. 1 (2010) 2816.
[55]        C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Anal. Chem. 81 (2009) 2378.
[56]        S. Alwarappan, S. Boyapalle, A. Kumar, C.Z. Li, S. Mohapatra, J. Phys. Chem. C  116 (2012) 6556.
[57]        R. Gao, J. Zheng, Electrochem. Commun. 11 (2009) 608.
[58]        J.T. Holland, C. Lau, S. Brozik, P. Atanassov, S. Banta, J. Am. Chem. Soc. 133 (2011) 19262.
[59]        X. Liu, L. Shi, W. Niu, H. Li, G. Xu, Biosens. Bioelectron. 23 (2008) 1887.
[60]        Y. Su, Q. Xie, C. Chen, Q. Zhang, M. Ma, S. Yao, Biotechnol. Prog. 24 (2008) 262.
[61]        Y. Wang, Y. Yao. Microchim. Acta 176 (2012) 271.
[62]        J.P. Lowry, K. McAteer, S.S. El Atrash, A. Duff, R.D. O'Neill, Anal. Chem. 66 (1994) 1754.
[63]        D. Brady, J. Jordaan, Biotechnol. Lett. 31 (2009) 1639.
[64]        N.M. Nor, Z. Lockman, K.A. Razak, Procedia Chem. 19 (2016) 50.
[65]         Q. Zeng, J.S. Cheng, X.F. Liu, H.T. Bai, J.H. Jiang, Biosens. Bioelectron. 26 (2011) 3456.
[66]        H. Du Toit, M. Di Lorenzo, Electrochim. Acta 138 (2014) 86.
[67]        Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4 (2010) 1790.
[68]        S. Alwarappan, C. Liu, A. Kumar, C.Z.  Li,  J.  Phys.
 
 
Chem. C 114 (2010) 12920.
[69]        R. Sternberg, D.S. Bindra, G.S. Wilson, D.R. Thevenot, Anal. Chem. 60 (1988) 2781.
[70]        L. Setti, A. Fraleoni-Morgera, B. Ballarin, A. Filippini, D. Frascaro, C. Piana, Biosens. Bioelectron. 20 (2005) 2019.
[71]        M.A. Akhtar, R. Batool, A. Hayat, D. Han, S. Riaz, S.U. Khan, L. Niu, ACS Appl. Nano Mater. 2 (2019) 1589.
[72]        B.D. Mansuriya, Z. Altintas, Mater. 13 (2020) 96.
[73]        J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, X. Hu, Z. Yang, Microchim. Acta 187 (2020) 1.
[74]        Y. Song, M. Xu, C. Gong, Y. Shen, L. Wang, Y. Xie, L. Wang, Sens. Actuators, B 257 (2018) 792.
[75]        H. Cheng, X. Wang, H. Wei, Anal. Chem. 87 (2015) 8889.
[76]        I. Kim, D. Kwon, D. Lee, T.H. Lee, J.H. Lee, G. Lee, D.S. Yoon, Biosens. Bioelectron. 102 (2018) 617.
[77]        L. Wang, M. Xu, Y. Xie, C. Qian, W. Ma, L. Wang, Y. Song, Sens. Actuators, B 285 (2019) 264.
[78]        S. Soylemez, H.Z. Kaya, Y.A. Udum, L. Toppare, Org. Electron. 65 (2019) 327.
[79]        E. Bihar, S. Wustoni, A.M. Pappa, K.N. Salama, D. Baran, S. Inal, npj Flexible Electron. 2 (2018) 1.
[80]        H. Lee, C. Song, S. Baik, D. Kim, T. Hyeon, D.H. Kim, Adv. Drug Delivery Rev. 127 (2018) 35.
[81]        Q. Cao, B. Liang, T. Tu, J. Wei, L. Fang, X. Ye, RSC Adv. 9 (2019) 5674.
[82]        L. Lipani, B.G. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell, R.H. Guy, A. Ilie, Nat. Nanotechnol. 13 (2018) 504.
[83]        B. Saha, S.K. Jana, S. Majumder, S. Banerjee, Sens. Actuators, B 283 (2019) 116.
[84]        D.J. Harrison, R.F. Turner, H.P. Baltes, Anal. Chem. 60 (1988) 2002.
[85]        S. Poyard, N. Jaffrezic-Renault, C. Martelet, S. Cosnier, P. Labbe, Anal. Chim. Acta 364 (1998) 165.
[86]        S.H. Lim, J. Wei, J. Lin, Q. Li, J. KuaYou, Biosens. Bioelectron. 20 (2005) 2341.
[87]        C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Anal. Chem. 81 (2009) 2378.
[88]        K. Zhou, Y. Zhu, X. Yang, C. Li, Electroanalysis 22 (2010) 259.
[89]        A.  Ramanavičius,  A.  Kaušaitė,  A. Ramanavičienė,
 
 
Sens. Actuators, B. 111 (2005) 532.
[90]        O.M. Schuvailo, O.O. Soldatkin, A. Lefebvre, R. Cespuglio, A.P. Soldatkin,               Anal. Chim. Acta 573 (2006) 110.
[91]        S. Poyard, C. Martelet, N. Jaffrezic-Renault, S. Cosnier, P. Labbe, Sens. Actuators, B 58 (1999) 380.
[92]        N.G. Poulos, J.R. Hall, M.C. Leopold, Langmuir 31 (2015) 1547.
[93]        T.T. Baby, S.J. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Sens. Actuators, B 145 (2010) 71.
[94]        Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir 26 (2010) 6158.
[95]        S. Alwarappan, C. Liu, A. Kumar, C.Z. Li, J. Phys. Chem. C  114 (2010) 12920.
[96]        H. Yin, Y. Zhou, X. Meng, K. Shang, S. Ai, Biosens. Bioelectron. 30 (2011) 112.
[97]        W. Zhang, Y. Du, M.L. Wang, Sens. Biosens. Res. 4 (2015) 96.
[98]        N.M. Nor, Z. Lockman, K.A. Razak, Procedia Chem. 19 (2016) 50.
[99]        J. Liu, A. Chou, W. Rahmat, M.N. Paddon-Row, J.J. Gooding, Electroanalysis 17 (2005) 38.
[100]    L.F. Ang, L.Y. Por, M.F. Yam, PLoS One 10 (2015) e0111859.
[101]    A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Biosens. Bioelectron. 24 (2008) 676.
[102]    W. Nouira, A. Maaref, H. Elaissari, F. Vocanson, M. Siadat, N. Jaffrezic-Renault, Mater. Sci. Eng. C 33 (2013) 298.
[103]    W. Wu, J. Shen, Y. Li, H. Zhu, P. Banerjee, S. Zhou, Biomater. 33 (2012) 7115.
[104]    M. Ahmad, C. Pan, Z. Luo, J. Zhu, J. Phys. Chem. C 114 (2010) 9308.
[105]    A.J. Bandodkar, S. Imani, R. Nunez-Flores, R. Kumar, C. Wang, A.V. Mohan, J. Wang, P.P. Mercier, Biosens. Bioelectron. 101 (2018) 181.
[106]    E. Vargas, H. Teymourian, F. Tehrani, E. Eksin, E. Sánchez-Tirado, P. Warren, A. Erdem, E. Dassau, J. Wang, Angew. Chem., Int. Ed. 58 (2019) 6376.
[107]    L.O. Orzari, R.C. de Freitas, I.A. de Araujo Andreotti, A. Gatti, B.C. Janegitz, Biosens. Bioelectron. 138 (2019) 111310.
[108]    Z. Li, F. Gao, Z.  Gu, Sens.  Actuators,  B 243 (2017)
 
 
1092.
[109]    J.M. Jeong, M. Yang, D.S. Kim, T.J. Lee, B.G. Choi, J. Colloid Interface Sci. 506 (2017) 379.
[110]    E.C. Rama, A. Costa-García, M.T. Fernández-Abedul, Biosens. Bioelectron. 88 (2017) 34.
[111]    M. Marquitan, T. Bobrowski, A. Ernst, P. Wilde,           J. Clausmeyer, A. Ruff, W. Schuhmann, J. Electrochem. Soc. 165 (2018) G3008.
[112]    R. Ravichandran, J.G. Martinez, E.W. Jager, J. Phopase, A.P. Turner, ACS Appl. Mater. Interfaces 10 (2018) 16244.
[113]    C. Chen, R. Ran, Z. Yang, R. Lv, W. Shen, F. Kang, Z.H. Huang, Sens. Actuators, B 256 (2018) 63.
[114]    F.N. Comba, M.R. Romero, F.S. Garay, A.M. Baruzzi, Anal. Biochem. 550 (2018) 34.
[115]    N.P. Godman, J.L. DeLuca, S.R. McCollum, D.W. Schmidtke, D.T. Glatzhofer, Langmuir 32 (2016) 3541.
[116]    L. Fang, B. Liu, L. Liu, Y. Li, K. Huang, Q. Zhang, Sens. Actuators, B 222 (2016) 1096.
[117]    J. He, H. Yang, Y. Zhang, J. Yu, L. Miao, Y. Song, L. Wang, Sci. Rep. 6 (2016) 36637.
[118]    Z. Pu, R. Wang, J. Wu, H. Yu, K. Xu, D. Li, Sens. Actuators, B 230 (2016) 801.
[119]    H. Al-Sagur, S. Komathi, M.A. Khan, A.G. Gurek, A. Hassan, Biosens. Bioelectron. 92 (2017) 638.
[120]    E. Sapountzi, M. Braiek, F. Vocanson, J.F. Chateaux, N. Jaffrezic-Renault, F. Lagarde, Sens. Actuators, B 238 (2017) 392.
[121]    D.H. Shin, W. Kim, J. Jun, J.S. Lee, J.H. Kim, J. Jang, Sens. Actuators, B 264 (2018) 216.
[122]    S. Cinti, R. Cusenza, D. Moscone, F. Arduini, Talanta 187 (2018) 59.
[123]    M.H. Asif, A. Razaq, N. Akbar, B. Danielsson, I. Sultana, Mater. Res. Express. 6 (2019) 095028.
[124]    H. Guan, D. Gong, Y. Song, B. Han, N. Zhang, Colloids Surf., A  574 (2019) 260.
[125]    Q.L. Liao, H. Jiang, X.W. Zhang, Q.F. Qiu,                     Y. Tang, X.K. Yang, Y.L. Liu, W.H. Huang, Nanoscale 11 (2019) 10702.
 
 
 
 
 
 
[126]    J. Yoon, S.N. Lee, M.K. Shin, H.W. Kim, H.K. Choi, T. Lee, J.W. Choi, Biosens. Bioelectron. 140 (2019) 111343.
[127]    S. Phetsang, J. Jakmunee, P. Mungkornasawakul, R. Laocharoensuk, K. Ounnunkad, Bioelectrochemistry 127 (2019) 125.
[128]    S. Soylemez, H.Z. Kaya, Y.A. Udum, L. Toppare, Org. Electron. 65 (2019) 327.
[129]    L. Wang, M. Xu, Y. Xie, C. Qian, W. Ma, L. Wang, Y. Song, Sens. Actuators B Chem. 285 (2019) 264.
[130]    A. Weremfo, S. Tung, C. Fong, A. Khan, D.B. Hibbert, C. Zhao, Electrochim. Acta 231 (2017) 20.
[131]    S. Park, H. Boo, T.D. Chung. Anal. Chim. Acta 556 (2006) 46.
[132]    G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan,             W. Pu, J. Zhang, L. Li, Nanoscale
Res. Lett. 13 (2018) 3.
[133]    H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, J. Mater. Chem. B 4 (2016) 7333.
[134]    H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, S.H. Choi, D.H. Kim, Nat. Nanotechnol. 11 (2016) 566.
[135]    F. Wang, L. Liu, W.J. Li, Graphene-Based Glucose Sensors: A Brief Review. IEEE Trans. Nanobioscience 14 (2015) 818.
[136]    Q. Zhang, Q. Luo, Z. Qin, L. Liu, Z. Wu, B. Shen, W. Hu, ACS Omega 3 (2018) 3420.
[137]    A.F.T. Waffo, C. Yesildag, G. Caserta, S. Katz, I. Zebger, M.C. Lensen, U. Wollenberger, F.W. Scheller, Z. Altintas, Sens. Actuators B Chem. 275 (2018) 163.
[138]    D.M. Kim, J.M. Moon, W.C. Lee, J.H.                       Yoon, C.S. Choi, Y.B. Shim, Biosens.
Bioelectron. 91 (2017) 276.
[139]    R. Prasad, B.R. Bhat, Sens. Actuators B Chem. 220 (2015) 81.
[140]    W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Angew. Chemie- Int. Ed. 49 (2010) 2114.