Optimization of Removal of Ibuprofen Antibiotic from Water in the Presence of ZnO/Fe2O3 and ZnO/activated Carbon Nanoparticles Using Response Surface Methodology

Document Type : Research Paper

Authors

1 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

2 PNU university

Abstract

In this study, ZnO/Fe2O3 and ZnO/activated carbon nanoparticles have been employed as efficient adsorbents for the removal of ibuprofen antibiotic from aqueous solutions. Nano-adsorbents were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The results illustrate that the ZnO/Fe2O3 and ZnO/activated carbon nanocomposite were successfully synthesized. Optimization of the removal of ibuprofen was scrutinized via response surface methodology (RSM) based on central composite design (CCD). The process parameters, such as pH (4-6), contact time (10-20 min), nanoparticles dosage (0.02-0.04 wt.%), and nano-adsorbent type (ZnO/Fe2O3 and ZnO/activated carbon) were investigated in batch experiments. Within the range of the chosen experimental conditions, the optimized values of pH, contact time, nanoparticles dosage, and nano-adsorbent type were obtained to be 5.48, 17.22 min, 0.03 wt.%, and ZnO/Fe2O3, respectively. According to the optimum condition, the anticipated Ibuprofen removal was 83.74% and the empirical value was 85.42%. The high values of R2 95.96 and R2 adj 93.78 demonstrate that the fitted model shows a satisfactory accord with the anticipated and empirical Ibuprofen removal. Adsorption kinetics and isotherms are well-fitted with pseudo-second-order and Langmuir models, respectively, meaning that monolayer adsorption of Ibuprofen to the adsorbent's surface is controlled by electrostatic interactions, stacking of π-π, and linkages of hydrogen

Keywords