A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Document Type : Research Paper


Chemistry Department, Shiraz University


Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzymatic reaction and the quenching effect of H2O2 on the CdTe/TGA quantum dots photoluminescence. This QDs-based assay exhibits several advantages. Enzyme immobilization and QDs modification process are not required and the high stability of the QDs towards photobleaching is beneficial to this sensing system. The proposed method is linear in concentration range of 1.00 × 10-1-3.00 × 10-5 M of glucose and has a detection limit of 1.25 × 10-8 M. The results of real sample analysis show that the glucose oxidase CdTe/TGA QDs system would be a promising glucose-biosensing system.


[1] T. E. Edmonds, Ed.; Chemical Sensors, Chapman and Hall; New York, 1988.
[2] D.M.G. Preethichandra and E.M.I. Mala Ekanayake, Nano-Biosensor Development for Biomedical and Environmental Measurements, S.C. Mukhopadhyay, A. L.Ekuakille, A. Fuchs (Eds.): New Developments and Applications in Sensing Technology 83 (2011) 279 - 292.
[3] A. Sadanandom, R. M. Napier, Biosensors in plants, Curr. Opin. Plant. Biol. 13 (2010) 736 - 743.
[4] I. L. Justino, A. Teresa, R. Santos, C. A. Duarte, Review of analytical figures of merit of sensors and biosensors in clinical applications, Trends. Anal. Chem. 29 (2010) 1172 -1183.
[5] L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: A review, Biosens. Bioelectron. 26 (2011) 1788 -1799.
[6] D. Ahuja, D. Parande, Optical sensors and their applications, J. Sci. Res. Rev.1 (2012) 60-68.
[7] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Immunofluorescent labeling of cancer marker Her and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21 (2003) 41 – 46.
[8] K. Grieve, P. Mulvaney, F. Grieser, Synthesis and electronic properties of semiconductor nanoparticles/quantum dots, Curr. Opin. Colloid Interface Sci. 5 (2000) 168 – 172.
[9] P. Alivisatos, The use of nanocrystals in biological detection, Nat. Biotechnol. 22 (2004) 47 – 52.
[10] M. Nirmal, L. Brus, Luminescence photophysics in semiconductor nanocrystals, Acc. Chem. Res.32 (1999) 407 – 414.
[11] R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis, Angew. Chem. Int. Ed.47 (2008) 7602 – 7625.
[12] M. A. Jhonsi, R. Renganathan, Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins, J. Colloid Interface Sci. 344 (2010) 596–602.
[13] J. Duan, L. Song, J. Zhan, One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+ -sensitive properties, Nano Res. 2 (2009) 61- 68.
[14] J. Tashkhourian, M.R. Hormozi Nezhad, J. Khodaveisi, R. Dashti, A novel photometric glucose biosensor based on decolorizing of silver nanoparticles, Sen. Actuat. B 158 (2011) 185– 189.
[15] L. Qingwen, L. Guoan, W. Yiming, Z. Xingrong, Immobilization of glucose oxidase in sol–gel matrix and its application to fabricate chemiluminescent glucose sensor, Mater. Sci. Eng. C 11 (2000) 67–70.
[16] E. A. Moschou, B. V. Sharma, S. K. Deo, S. Daunert, Fluorescence glucose detection: advances toward the ideal in vivo biosensor, J. Fluoresc. 14 (2004) 535 -547.
[17] M. Ben-Moshe, V. L. Alexeev, S. A. Asher, Fast responsive crystalline colloidal array photonic crystal glucose sensors, Anal. Chem. 78 (2006) 5149-5157.
[18] T. Zhang, E. V. Anslyn, Using an indicator displacement assay to monitor glucose oxidase activity in blood serum, Org. Lett. 9 (2007) 1627 -1629.
[19] M.C. Lee, S. Kabilan, A. Hussain, X. Yang, J. Blyth, C. R. Lowe, Glucose-sensitive holographic sensors for monitoring bacterial growth, Anal. Chem. 76 (2004) 5748-5755.
[20] X. D. Ge, L. Tolosa, G. Rao, Dual-labeled glucose binding protein for ratiometric measurements of glucose, Anal. Chem. 76 (2004) 1403-1410.
[21] D.M. Porterfield, Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: Recent developments in self-referencing amperometry for physiological sensing, Biosens. Bioelectron. 22 (2007) 1186 -1196.
[22] F. Rolland, E. Baena-Gonzalez, J. Sheen, Sugar sensing and signaling in plants: conserved and novel mechanisms, Annu. Rev. Plant Biol. 57 (2006) 675 -709.
[23] K. Ai, B. Zhang, L. Lu, Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker, Angew. Chem. Int. Ed. 48 (2009) 304 -308.
[24] A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes Management, Chem. Rev. 108 (2008) 2482 -2505.
[25] L.A. Terry, S.F. White, L.J. Tigwell, The application of biosensors to fresh produce and the wider food industry, J. Agric. Food Chem. 53 (2005) 1309 -1316.
[26] L.C. Clark, C. Lyons, Ann. N.Y. Electrode systems for continuous monitoring in cardiovascular surgery, Acad. Sci. 102 (1962) 29 -45.
[27] M. Hu, J. Tian, H. T. Lu, L. X. Weng, L. H. Wang, H2O2-sensitive quantum dots for the label-free detection of glucose, Talanta 82 (2010) 997–1002.
[28] S. Lee, V. H. Perez-Luna, Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection, Anal. Chem. 77 (2005) 7204-7211.
[29] K. Aslan, J. R. Lakowicz, C. D. Geddes, Nanogold plasmon-resonance-based glucose sensing 2: Wavelength-ratiometric resonance light scattering, Anal. Chem. 77 (2005) 2007-2014.
[30] G. Blagoi, N. Rosenzweig, Z. Rosenzweig, Design, Synthesis and application of particle-based FRET sensors for carbohydrates and glycoproteins, Anal. Chem. 77 (2005) 393-399.
[31] P. W. Barone, R. S. Parker, M. S. Strano, In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages, Anal. Chem. 77 (2005) 7556-7562.
[32] B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Cote, Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates, Anal. Chem. 77 (2005) 7039-7046.
[33] W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, S.-T. Lee, Silicon nanowires for high-sensitivity glucose detection, Appl. Phys. Lett. 88 (2006) 213104/1-213104/3.
[34] T. Chen, K. A. Friedman, I. Lei, A. Heller, In situ assembled mass-transport controlling micromembranes and their application in implanted amperometric glucose sensors, Anal. Chem. 72 (2000) 3757-3763.
[35] A. Abbaspour, M. A. Mehrgardi, M. A. Noori, A. Kamyabi, Khalafi-Nezhad and M. N. Soltani Rad, Speciation of iron(II), iron(III) and full-range pH monitoring using paptode: A simple colorimetric method as an appropriate alternative for optodes. Sens. Actuat. B: Chemical 113 (2006) 857 -865.
[36] Y. Zhang, Y. Li, X.P. Yan, Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids, Anal. Chem. 81 (2009) 5001-5007.
[37] M. A. Jhonsi, R. Renganathan, Study on the photoinduced interaction between TGA capped CdTe quantum dots and certain porphyrins by using spectroscopic techniques, J. Colloid Interface Sci. 344 (2010) 596-602.
[38] J. N. Tian, R. J. Liu, Y. C. Zhao, Q. Xu, S. L. Zhao, Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid, J. Colloid Interface Sci. 336 (2009) 504-509.
[39] T. Khosousi, PhD Thesis, Shiraz University, Shiraz, Iran (2012).
[40] M. Hu, J. Tian, H. T. Lu, L. X. Weng, L. H. Wang, H2O2-sensitive quantum dots for the label-free detection of glucose, Talanta 82 (2010) 997 -1002.
[41] Y. C. Shiang, C.C. Huang, H.T. Chang, Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose, Chem. Commun. 14 (2009) 3437-3439.
[42] L. H. Cao, J. Ye, L. L. Tong, B. Tang, A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing, Chem. Eur. J. 14 (2008) 9633 -9640.
[43] M. Gao, S. Kirstein, H. Mhwald, A.L. Rogach, A. Kornowski, A. Eychmller, H. Weller, Strongly photoluminescent CdTe nanocrystals by proper surface modification, J. Phys. Chem. B 102 (1998) 8360-8363 .
[44] S. Chutipongtanate, V. Thongboonkerd, Systematic comparisons of artificial urine formulas for in vitro cellular study, Anal. Biochem. 402 (2010) 110-112.
[45] M. V. Martinez-Ortega, M. C. Garcia-Parrilla, Ana M. Troncoso, Comparison of different sample preparation treatments for the analysis of wine phenolic compounds in human plasma by reversed phase high-performance liquid chromatography, Anal. Chim. Acta 502 (2004) 49-55.
[46] F. M. Lopesi, K. D. A. Batistai, G. L. A. Batistai, K. F. Fernandes, Biosensor for determination of glucose in real samples of beverages, Sci. Tech. Aliment. 32 (2012) 65 -69.
[47] A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays, Angew. Chem. Int. Ed. 46 (2007) 1318 -1320.
[48] Y. Ni, C. Huang, S. Kokot, A kinetic spectrophotometric method for the determination of ternary mixtures of reducing sugars with the aid of artificial neural networks and multivariate calibration, Anal. Chim. Acta 480 (2003) 53 -65.
[49] M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Paper bioassay based on ceria nanoparticles as colorimetric probes, Anal. Chem. 83 (2011) 4273 -4280.
[50] X. Li, Y. Zhou, Z. Zheng, X. Yue, Z. Dai, S. Liu, Z. Tang, Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase, Langmuir 25 (2009) 6580-6586.