A Sensitive Chlorpromazine Voltammetric Sensor Based on Graphene Oxide Modified Glassy Carbon Electrode

Document Type : Research Paper

Authors

1 Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran

2 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

Abstract

A glassy carbon electrode modified with graphene oxide (GO/GCE) is proposed as a novel electrochemical platform for detection of chlorpromazine. The electrochemical activity of GO/GCE towards chlorpromazine was investigated using cyclic voltammetry (CV) experiments in 0.1 M phosphate buffer solution (PBS). The overpotential for the oxidation of chlorpromazine decreased significantly and its oxidation peak currents increased dramatically at GO/GCE. The potential utility of the sensor was demonstrated by applying it to the analytical determination of chlorpromazine concentration using differential pulse voltammetry (DPV). These results are beneficial for real sample analysis. The sensor worked linearly in the range of 0.05 to 200.0 μM and had a detection limit of 42.0 nM using DPV. The fabricated sensor was successfully applied to the detection of chlorpromazine in real samples. The experiments illustrate that graphene oxide is a worthy electrode material which offers a large surface-to-volume ratio and improves the sensitivity. Here, a new sensor is introduced that is simple, rapid, sensitive and cost-effective for quantitation of chlorpromazine.

Keywords


[1]       B. Unnikrishnan, P.C. Hsu, S.M. Chen, Int. J. Electrochem. Sci. 7 (2012) 11414.
[2]       F. Liu, J. Shao, Y. Zhao, Anal. Methods 6 (2014) 6483.
[3]       Z. Liu, F. Zhang, L. Cui, K. Wang, H. Zhan, Anal. Methods 9 (2017) 1011.
[4]       S. Palanisamy, B. Thirumalraj, S.M. Chen, Y.T. Wang, V. Velusamy, S.K. Ramaraj, Sci. Rep. 6 (2016) 33599.
[5]       Y. Yamini, M. Faraji, J. Pharm.
Anal. 4 (2014) 279.
[6]       A. Mokhtari, B. Rezaei, Anal. Methods 3 (2011) 996.
[7]       T. Aman, A. Rashid, I. Khokhar, J. Iqbal, Anal. Lett. 30 (1997) 109.
[8]       A.M. Mohamed, O.H. Abdelmageed, H. Salem, D.M. Nagy, M.A. Omar, Luminescence 28 (2013) 345.
[9]       L. Zhang, P. Wu, Y. Zhang, Q. Jin, D. Yang, L. Wang, J. Zhang, Anal. Methods 6 (2014) 503.
[10]    J.M. Liu, L.P. Lin, X.X. Wang, X. Lin, P. Zhou, S.Q. Lin, Z.Y. Zheng, J. Fluoresc. 22 (2012) 1087.
[11]    M. Asanuma, I. Miyazaki, N. Ogawa, Neurotox. Res. 5 (2003) 165.
[12]    H.Beitollahi, S. Nekooei, M. Torkzadeh-Mahani,  Talanta, Volume 188 (2018) 701.
[13]    H. Mahmoudi Moghaddam, H. Beitollahi, S. Tajik, H. Soltani, Electroanalysis 27 (2015) 2620.
[14]    S. Tajik, M.A. Taher, H. Beitollahi, Electroanalysis 24 (2014) 796.
[15]    J. Tashkhourian, O. Sheydaei, Anal. Bioanal. Chem. Res. 4 (2017) 249.
[16]    M.H. Parvin, Electrochem. Commun. 13 (2011) 366.
[17]    M.H. Parvin, M.B. Golivand, M. Najafi, S.M. Shariaty, J. Electroanal. Chem. 683 (2012) 31.
[18]    H. Beitollahi, S. Ghofrani Ivari, M. Torkzadeh-Mahani, Biosens. Bioelectron. 110 (2018) 97.
[19]    Z. Wei, Y. Yang, X. Xiao, W. Zhang, J. Wang, Sens Actuators B 255 (2018) 895.
[20]    H. Beitollahi, S. Tajik, Sh. Jahani, Electroanalysis 28 (2016) 1093.
[21]    M. Taguchi, A. Ptitsyn, E.S. McLamore, J.C. Claussen, J. Diabetes Sci. Technol. 8 (2014) 403.
[22]    N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, Sens. Actuators B
221 (2015) 1412.
[23]    M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, B.F. Mirjalili, A. Akbari Analyst 136 (2011) 1965.
[24]    D. Zhang, X. Ouyang, W. Ma, L. Li, Y. Zhang, Electroanalysis 28 (2016) 312.
[25]    H. Beitollahi, J.B. Raoof, H. Karimi-Maleh, R. Hosseinzadeh, J. Solid State Electrochem. 16 (2012) 1701.
[26]    H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Anal. Chem. 80 (2008) 9848.
[27]    M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, Int. J. Electrochem. Sci. 5 (2010) 531.
[28]    Y.S. Gao, L.P. Wu, K.X. Zhang, J.K. Xu, L.M. Lu, X.F. Zhu, Y. Wu, Chin. Chem. Lett. 26 (2015) 613.
[29]    H. Beitollahi, I. Sheikhshoaie, Int. J. Electrochem. Sci. 7 (2012) 7684.
[30]    X.P. Hong, J.Y. Ma, Chin. Chem. Lett. 24 (2013) 329.
[31]    M. Hasheminejad, A. Nezamzadeh-Ejhieh, Food Chem. 172 (2015) 794.
[32]    H.  Beitollahi,  S.  Nekooei, Electroanalysis 28  (2016) 645.
[33]    E. Molaakbari, A. Mostafavi, H. Beitollahi, Sens. Actuators B 208 (2015) 195.
[34]    H. Mudila, S. Rana, M.G.H. Zaidi, J. Anal. Sci. Technol. 7 (2016) 3.
[35]    F. Khalilian, M. Farajvand, Anal. Bioanal. Chem. Res. 4 (2017) 21.
[36]    X. Qiu, L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, L. Bai, Food Chem. 190 (2016) 889.
[37]    K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Nano Lett. 6 (2011) 1.
[38]    T. Szabó, O. Berkesi, I. Dékány, Carbon. 43 (2005) 3186.
[39]    S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon. 44 (2006) 3342.
[40]    S.K. Mishra, S.N. Tripathi, V. Choudhary, B.D. Gupta, Sens. Actuators B 199 (2014) 190.
 [41]    A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2th ed, Wiley, New   York, 2001.
[42]    L. Li-Jun, Z. Liang, C. Hao, Y. Lai-Bo, C. Zhuo, Chem. Res. App. 5 (2009) 657.
[43]    A. Hajian, A.A. Rafati, A. Afraz, M. Najafi, J. Electrochem. Soc. 161 (2014) B196.
[44]    M.A. Karimi, A. Hatefi-Mehrjardi, M. Mazloum Ardakani, R. Behjatmanesh Ardakani, M.H. Mashhadizadeh, S. Sargazi, Russ. J. Electrochem. 47 (2011) 34.
[45]    G. Xu, S. Dong, Anal. Chem. 72 (2000) 5308.