Comparative Methods for Online Preconcentration of Copper Ions on Epichlorohydrin Cross Linked Silica Gel-chitosan Composite Beads and Epichlorohydrin Crosslinked Multi Walled Carbon Nanotube-Chitosan Composite Beads by Flow Injection System

Document Type : Research Paper

Authors

Manisa Celal Bayar University, Faculty of Science and Arts, Chemistry Department, Manisa, Turkey

Abstract

In this work, two different adsorbent were comparatively used and developed preconcentration of ultra-trace levels of copper ions by flow injection analyses for atomic absorption spectrometry. Copper ions were preconcentrated on a mini-column packed with epichlorohydrin cross-linked silica gel-chitosan composite beads and epichlorohydrin cross linked multiwalled carbon nanotubes-chitosan composite beads. 0.1 M Ethylene diamine tetra acetic acid and 0.1 M nitric acid solutions were used in order to remove the copper ions from the adsorbents. The factors affecting preconcentration of copper (II) ions such as sample and eluent flow rate, loading time, pH, eluent concentration, interfering ions were investigated. Under the optimized parameters, detection limits of the methods were obtained as 2 ng mL−1 for epichlorohydrin cross linked silica gel-chitosan composite beads and 1.3 ng mL−1 for epichlorohydrin cross linked multiwalled carbon nanotubes-chitosan composite beads with enrichment factor of 23 and 19.2 respectively. The recoveries and intra-day and inter-day precisions for copper ions were >90.0% and >3% respectively. In order to validate the developed methods, a certified reference material of drinking water, was analyzed and the determined values were in good agreement with the certified values. The developed methods have also been applied to the determination of copper (II) ions in Gediz River in Turkey with satisfactory results.

Keywords


[1]        J. Ruzicka, E.H. Hansen, Flow Injection Analysis, second ed. Chichester; Wiley, 1998.
[2]       P.C. Rudner, A.G. Torres, J.M.C. Pavoin, F.S. Rojas, Talanta 46 (1998) 1095. 
[3]       Z. Fang, Z. Zhu, S. Zhang, S. Xu, L. Guo, L. Sun, Anal. Chim. Acta 214 (1988) 41.
[4]       M.F. Garcia, R.P. Garcia, N.B. Garcia, A. Sanz-Medel, Talanta 41 (1994) 1833.
[5]       B.C. Mondal, D. Das, A.K. Das, Anal. Chim. Acta 450 (2001) 223.
[6]       E.M. Soliman, M.B. Saleh, S. Ahmed, Talanta 69 (2006) 55.
[7]       A.O. Martins, E.L. Silva, E.M. Carasek, C.M.V.T. Laranjeira, de Fávere, Talanta 63 (2004) 397.
[8]       M.R. Gandhi, S. Meenakshi, J. Hazard Mater. 203 (2012) 29.
[9]       D. Chen, B. Hu, C. Huang, Talanta 78 (2009) 491.
[10]    M. Behbahani, F. Najafi, M.M. Amini, O. Sadeghi,  A.
 
 
Bagheri, P.G. Hassanlou, J. Ind Eng. Chem. 20 (2014) 2248.
[11]    A. Bagheri, M.  Behbahani, M.M. Amini, O.  Sadeghi, M. Taghizadea, L. Baghayi, M. Salarian, Talanta 89 (2012) 455.
[12]    H. Ebrahimzadeh, M. Behbahani, Y. Yamini, L. Adlnasab, A.A. Asgharinezhad, React. Funct. Polym. 73 (2013) 23.
[13]    Y. Luo, Q. Wang, JFPB (2013) 11.
[14]    Y. Vijaya, S.R. Popuri, M. Veera Boddu, A. Krihnaiah, Carbohydr. Polym. 72 (2008) 261.
[15]    K. Kurita, Prog. Polym. Sci. 26 (2001) 1921.
[16]    G. Crini, Prog. Polym. Sci. 30 (2005) 38.
[17]    E. Guibal, Prog. Polym. Sci. 30 (2005) 71.
[18]    G. Crini, Bioresour. Technol. 97 (2006) 1061.
[19]    E.B. Denkbas, M. Odabasi, J. Appl. Polym. Sci. 76 (2000) 1637.
[20]    P.A. Felse, T. Panda, Bioprocess Eng. 20 (1999) 505.
[21]    W. Wan Ngah, S. Fatinathan, J. Environ. Sci. 22 (2010) 338.
[22]    R. Laus, T.G. Costa, B. Szpoganicz, V.T. Favere, J. Hazard Mater. 183 (2010) 233.
[23]    W.S.W.  Ngah, C.S. Endud, R. Mayanar, React. Funct.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Polym. 50 (2002) 181.
[24]    T.Y. Hsien, G.L. Rorrer, Ind. Eng. Chem. Res. 36 (1997) 3631.
[25]    V.L. Goncalves, M.C.M. Laranjeira, V.T. Favere, R.C. Pedrosa, Polimeros 15 (2005) 6.
[26]    E. Ruckenstein, X. Zeng, Ind. Eng. Chem. Res. 35 (1996) 4169.
[27]    A. Çelik, A. Dinçer, T. Aydemir, Int. J. Biol. Macromol. 89 (2016) 406.
[28]    M. R.Gandhi, S. Meenakshi, Int. J. Biol. Macromol. (2012) 650.
[29]    N. Pourreza, S. Rastegarzadeh, A. Larki, J. Ind. Eng. Chem. 20 (2014) 2680.
[30]    A.O. Jorgettoa, R.I.V. Silvaa, M.M. Longoa, M.J. Saeki, P.M. Padilhaa, M.A.U. Martines, B.P. Rochaa, G.R. Castro, Appl. Surf. Sci. 264 (2013) 368.
[31]    D. Mendil, M. Karatas, M. Tüzen,  Food Chem. 177 (2015) 320.
[32]    M. Habila, E. Yılmaz, Z.A. Alothman, M. Soylak, J. Ind. Eng. Chem. 20 (2014) 3989.