Trace Analysis of Phosphate Ion by Dispersive Liquid-liquid Microextraction Based on the Ion-pair Formation with Methyltrioctylammonium Chloride

Document Type : Research Paper


Department of Marine Chemistry, Faculty of Marine Science & Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran


A simple and efficient dispersive liquid-liquid microextraction (DLLME) method coupled with microvolume UV-vis spectrophotometry was developed for the determination of trace amounts of phosphate. This method is based on the formation of phosphomolybdate due to the reaction between molybdate and phosphate followed by its reduction with stannous chloride in aqueous sulfuric acid medium. The blue product was converted into its ion-pair with methyltrioctylammonium chloride (Aliquat-336) and then extracted into an organic solvent (carbon tetrachloride) dispersed in aqueous solution. The factors influential to this procedure, such as concentration of sulfuric acid, ammonium molybdate and Tin(II) chloride in the sample solution, amount of methyltrioctylammonium chloride, volume of extraction solvent and reaction time were investigated and optimized. Under optimum conditions, the linear range was found to be 50-6500 ng mL-1 for phosphate, and the limit of detection to be 12 ng mL-1. The proposed method has been applied for the determination of trace amounts of phosphate in different water and wastewater samples and satisfactory results were obtained.


[1]           N. Gissawong, S. Sansuk, S. Srijaranai, Spectrochimica Acta Part A 173 (2017) 994.
[2]           E.B. Ozkutuk, A. Ersoz, A. Denizli, R. Say, J. Hazard. Mater. 157 (2008) 130.
[3]           R.C. Rodriguez-Diaz, M.P. Aguilar-Caballos, F. Rincon, A. Gomez-Hens, Talanta 69 (2006) 1130.
[4]           E.A. Nagul, C. Fontàs, I.D. McKelvie, R.W. Cattrall, S.D. Kolev, Anal. Chim. Acta 803 (2013) 82.
[5]           F. Pena-Pereira, N. Cabaleiro, I. de la Calle, M. Costas, S. Gil, I. Lavilla, C. Bendicho, Talanta 85 (2011) 1100.
[6]           Y. Zhang, P. Thepsithar, X. Jiang, J.H. Taya, Ind. Crops Prod. 44 (2013) 459.
[7]           Th. Roth, R. Urpi Bertran, M. Pohlein, M. Wolf, R. van Eldik, J. Chromatogr. A 1262 (2012) 188.
[8]           A. Nezamzadeh Ejhieh, N. Masoudipour, Anal. Chim. Acta 658 (2010) 68.
[9]           Sh. Berchmans, T.B. Issa, P. Singh, Anal. Chim. Acta 729 (2012) 7.
[10]        L.   Krockel,   H.   Lehmann,   T.   Wieduwilt,  M.A. Schmidt, Talanta 25 (2014) 107.
[11]        M. Fiedoruk-Pogrebniak, R. Koncki, Talanta 144 (2015) 184.
[12]        H. Nakamura, H. Tanaka, M. Hasegawa, Y. Masuda, Y. Arikawa, Y. Nomura, K. Ikebukuro, I. Karube, Talanta 50 (1999) 799.
[13]        N. Nakatani, D. Kozaki, W. Masuda, N. Nakagoshi, K. Hasebe, M. Mori, K. Tanaka, Anal. Chim. Acta 619 (2008) 110.
[14]        W. Khongpet, S. Pencharee, Ch. Puangpila, S.K. Hartwell, S. Lapanantnoppakhun, J. Jakmunee, Talanta 177 (2018) 77.
[15]        J. Kozak, K. Latocha, J. Kochana, M. Wieczorek, P. Koƛcielniak, Talanta 133 (2015) 150.
[16]        J. Murphy, J.P. Riley, Anal. Chim. Acta 27 (1962) 31.
[17]        Y. Udnan, I.D. McKelvie, M.R. Grace, J. Jakmunee, K. Grudpan, Talanta 66 (2005) 461.
[18]        E. Habibi, K. Ghanemi, A. Larki, Anal. Methods 9 (2017) 4425.
[19]        S. Rastegarzadeh, N. Pourreza, A. Larki, J. Ind. Eng. Chem. 24 (2015) 297.
[20]        A. Larki, Spectrochimica Acta, Part A 173 (2017) 1.
[21]        S. Rastegarzadeh, N. Pourreza, A. Larki, Anal. Methods 6 (2014) 3500.
[22]        N. Pourreza, S. Rastegarzadeh, A. Larki, Talanta 134 (2015) 24.