Sensitive Voltammetric Detection of Indomethacin Using TiO2 Nanoparticle Modified Carbon Ionic Liquid Electrode

Document Type: Research Paper

Authors

1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Department of Chemistry, Payame Noor University, Tehran, Iran.

Abstract

In this work, a TiO2 nanoparticle modified carbon ionic liquid electrode (CILE) was employed as a sensitive sensor for the investigation of the electrochemical behavior of indomethacin (IND). This nanocomposite sensor has been fabricated by incorporation of TiO2 nanoparticles and the ionic liquid 1-hexylpyridinium hexafluorophosphate (HPFP). The surface of the electrode was studied by scanning electron microscopy (SEM). Differential pulse voltammetry (DPV) was used for quantification of sub-micromolar amounts of IND. Electrochemical parameters of the electrode reaction of IND, including the electron transfer coefficient (α) and the electron-transfer number (n), were calculated by cyclic voltammetry (CV) methods. Under selected conditions, the anodic peak current was linear for the concentration of IND in the broad range of 1.0 × 10-7 to 1.0 × 10-4 M with the detection limit of 2.1× 10-8 M. Moreover, the analytical performance of the proposed method for the determination of IND content in plasma samples was evaluated with good sensitivity and acceptable recoveries.

Keywords


[1]       E.G.C. Clarke, Isolation and Identification of Drugs in pharmaceuticals, Pharmaceutical Press, London, 1969.

[2]       B.G. Katzung, S.B. Masters, A.J. Trevor, Basic and clinical pharmacology, 12th ed., McGraw-Hill Medical, New York, 2012.

[3]       P. Nagaraja, R.A. Vasantha, H.S. Yathirajan, J. Pharm. Biomed. Anal. 31 (2003) 563.

[4]       N. Fouzia, A. Tehseen, M. Amina, N. Saima, Proc. PAS. 44 (2007) 173.

[5]       R.K. Maheshwari, A. Rathore, A. Agrawal, M.A. Gupta, Pharm. Methods. 2 (2011) 184.

[6]       K. Mawatari, F. Iinuma, M. Watanabe, J. Chromatogr. B. 491 (1989) 389.

[7]       P.C.A.G. Pinto, M.L.M.F.S. Saraiva, J.L.M. Santos, J.L.F.C. Lima, Anal. Chim. Acta 539 (2005) 173.

[8]       F. Nie, J. Lu, Y. He, J. Du, Talanta 66 (2005) 728.

[9]       L. Novakova, L. Matysova, L. Havlikova, P. Solich, J. Pharmaceut. Biomed. 37 (2005) 899.

[10]    Y. Zhang, Z. Zhang, G. Qi, Y. Sun, Y. Wei, H. Ma, Anal. Chim. Acta 582 (2007) 229.

[11]    X. Wang, D.I. Vernikovskaya, T.N. Nanovskaya, E. Rytting, G.D.V. Hankins, M.S. Ahmed, J. Pharmaceut. Biomed. 78-79 (2013) 123.

[12]    M. Hasanzadeha, N. Shadjoub, L. Saghatforoush, J. Ezzati, Colloids Surf., B: Biointerfaces 92 (2012) 91.

[13]    K. Sarhangzadeh, AA. Khatami, M. Jabbari, S. Bahari, J. Appl. Electrochem (2013). DOI 10.1007/s10800-013-0609-3

[14]    S.R. Sataraddi, S.M. Patil, A.M. Bagoji, V.P. Pattar, S.T. Nandibewoor, ISRN Anal. Chem (2014).

 

 

Available from: http://dx.doi.org/10.1155/2014/ 816012

[15]    X. Niu, L. Yan, X. Li, Anhui Hu, C. Zheng, Y. Zhang, W. Sun, Int. J. Electrochem. Sci. 11 (2016) 1720.

[16]    S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56 (2011) 1639.

[17]    A. Ensafi, H. Bahrami, B. Rezaei, H. Karimi-Maleh, Sci. Eng., C 33 (2013) 831.

[18]    M.R. Baezzat, F. Banavand, F. Fasihi, Ionics (2018). Available from: https://doi.org/10.1007/s11581-018-2699-8

[19]    S.F. Wang, H.Y. Xiong, Q.X. Zeng, Electrochem. Commun. 9 (2007) 807.

[20]    A. Kurachi, M. Matsumiya, K. Tsunashima, S. Kodama, J. Appl. Electrochem. 42 (2012) 961.

[21]    N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem. 78 (2006) 3820.

[22]    W. Sun, X.-Q. Li, K. Jiao, J. Chin. Chem. Soc. 55 (2008) 1074.

[23]    M.R. Baezzat, F. Banavand, F. Fasihi, J. Mol. Liq. 233

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2017) 391.

[24]    R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton, Anal. Chem. 81 (2009) 435.

[25]    M. Opallo, A. Lesniewski, J. Electroanal. Chem. 2 (2011) 656.

[26]    M.H. Mashhadizadeh, F. Rasouli, Electroanalysis 26 (2014) 2033.

[27]    K.S. Prasad, M.C. Chuang, J.A.A. Ho, Talanta 88 (2012) 445.

[28]    F. Fasihi, F. Farjami, G.H. Shafiee, RSC Adv. 5 (2015) 95087.

[29]    D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis   Mechanisms, Wiley-VCH, New York, NY, USA, 1993.

[30]    J.A. Harrison, Z.A. Khan, J. Electroanal. Chem. 28 (1970) 131. 

[31]    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2th ed., Wiley, New York, 2001.